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Outline.

e random fields vs. ‘random bonds’

e Imry-Ma-Imbrie argument for random fields

e analog argument for random bonds (Aizenman-Wehr)
e what happens beyond the crossover length?

e numerical work on ()-state Potts model

e a more-or-less solvable example:
N coupled Ising models

e experiment

These transparencies available at
http://www-thphys.physics.ox.ac.uk/users/
JohnCardy/seminars/rfo.ps
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The Problem

e pure system with a unique high-7" phase and @) > 2
equivalent low-T" phases:

e transition at 7. in pure system is first-order:

— coexistence at T, of () + 1 phases with same free
energy at 1.

— discontinuities in internal energy U (latent heat L)
and order parameter M

— finite correlation length &, at T

— finite interfacial tensions at 7.
e add quenched uncorrelated random impurities, either:

— random fields, coupling to local order parameter M ()
H = Hpure + > h(r)M(r); h(r) = £h

— or ‘random 7T,.’, coupling only to local energy density

Ulr)
H = Hpure +2 At (r)U(r); At.(r) = £A

e Random field Ising model and random 7. are physically
very different but mathematically analogous



Random Field Ising Model — Imry-Ma

argument

e look at low temperature (ignore thermal fluctuations)

e consider stability of ordered phase against formation of
region of oppositely ordered phase, size O(R)

V
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e by choosing region appropriately, reduce energy

by ~ hMyv R4
e increase of energy due to domain wall ~ J R-1

e = for d > 2, ordered phase is stable at low T" against
weak random fields



e d = 2 more subtle: in fact ordered phase is unstable
[Imbrie]

e RG argument [Bray-Moore| based on looking at a
single interface gives

dh/dl = (d/2)h
dJ/dt = J((d—1)—(h/J)*+---)

so that
AW I)dt = (L= dJ2)(0]J) + (1)) + -
— critical value h* = O(J) for d > 2

— finite correlation length & ~ et/ D for d = 2



Random 7. Analogy

magnetization M <+ internal energy U
random field A < random 7, ~ A
ignore thermal fluctuations <+ strong first-order

interfacial tension J <+ interfacial tension L&

Then:

o for d > 2 there is critical A* = O(L&,) above which
phase coexistence cannot occur

e thermal exponents at this tricritical point are related to
the magnetic exponents of the random field Ising model
[Jacobsen & Cardy]

e for d = 2 any amount of randomness destroys phase
coexistence [Aizenman-Wehr| and there is a cross-over

length scale &, ~ &)eCOHSt(LﬁO/A)Q
BUT:

e what is the nature of the critical state for A > A* for
d > 2, and on length scales > &, in d = 27

e why is the random 7, case different from the random
field Ising model on length scales > £,7



System breaks up into domains size O(&x):

éf‘x%

For () > 2 the ordered regions can still fluctuate - but what
is the resultant critical behaviour?

e does the correlation length diverge?

e what are the critical exponents?



Numerical Results for the ()-state Potts Model
Chen, Ferrenberg, Landau (1995), JC &
Jacobsen (1997), ..., Jacobsen & Picco (1999)

Pure system:
e ‘spins’ s(r) taking values 1,2,...,Q
o H = —JSnn Os(r),s(r)
e () ordered states for T < T.
e first-order for ) > Q. =4 ind =2
e strongly first-order for large Q: L ~ In @, & = O(1)
e I, known exactly by duality for d = 2
Now add randomness to J. Results (d = 2):
e correlation length appears to diverge
e v numerically consistent with 1
e [ increases steadily with @), asymptoting to 5 ~ 0.19
e cffective central charge ¢ = %1112 Q

Comment: ¢ is a measure of the entropy of the fluctuating
large-scale degrees of freedom = ¢ o In ). But why the
coefficient”



A Solvable Case: N coupled Ising models
JC (1995 & unpublished)

Pure system:

e [sing spins s;(r) =1 (j=1,...,N)

H=—J% 5 si(r)s;(r')—g = 3 ((s(r)s;(r')) (si(r)sk(r'))

j 11.1m. ]k nn

e for ¢ > 0 model undergoes a first-order transition if
N > 2 (see below)

Now add quenched randomness in J: RG flows
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e At large enough length scales,
N strongly coupled Ising models with weak disorder
~ IN weakly coupled Ising models with strong disorder

e if so, and such transitions are ‘superuniversal’, this ex-
plains

—why v = 1
— why ¢ & %1HQQ:%N where 2V = Q

e but S is apparently not superuniversal



Light from the fermion description of the 2d
Ising model

e continuum limit Ising model <+ free fermion
H = 1(o - N +mapp)d?r where m o< T — T,
e N coupled Ising models
/ diple — [ (1000 j+mi i) —g(5; 0 j1b5) %) d?r
= [[dy][du]e” " 294550 jo- 0t j+ (mtu) ) dPr
/

du]e™ (19T (= Fsing (mtu)y N

e rescale g — g/N: large N saddle-point found by mini-
mizing
F/N = Figng(m-+u)+u’/g ~ (m+u)? In |m-+u|+u’/g

o)

NS

o for m — 0+, u ~ ug ~ e~ /9
for m — 0—, u ~ —uy = first-order transition!

e now add randomness m — m(r):

m(r) predominantly > 0 = u ~ ug
m(r) predominantly <0 = u ~ —uy

— the Imry-Ma domains, smoothed out on scale &
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e but along lines where u = 0 there are gapless fermions!

e N decoupled fermions (= N decoupled Ising models)
in disorder correlated over regions ~ &,
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e picture much clearer in network model description of
random Ising models [Chalker and Merz, 2001]

e surviving fermions completely analogous to edge states
in quantum Hall physics!
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Summary & Open Questions

e strong analogy between random field Ising model and
random 7, at a first-order transition = Imry-Ma do-
mains

e for d = 2, one model for which nature of large scale crit-
ical state understood, analogy to quantum Hall physics

e superuniversality of energy fluctuations: v ~ 1,
c ~ %1112 Q

e why are order parameter fluctuations not superuniver-
sal?

e experimental realizations:

— difficult to realize random 7, without random fields

— very large length scales necessary, need good samples
to get sharp transition
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