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This talk 1s about some mathematical
results on particle transport in random
media

e propagation of a particle in a random medium
is often modeled by a network:

e medium represented by some fixed graph G
with &€ edges and N nodes

e at each tick of the clock, the particle moves
through one node, from edge e to edge €’ say



Classical Version

e specify transition probabilities Qe — €') at
each node n, with

26, Qn(@ — 6/) — 1
e gives a random walk on G:

—what is the probability P(ey,e;T) that,
beginning at e, particle reaches ey after T
steps”?

e more interesting if the walk is history-dependent,
eg:
— a given edge may be traversed at most once:
a traul
— transition probabilities €, (e — €’) may de-

pend on whether particle has previous vis-
ited the node



Example: Hall of Mirrors

e at each node the particle turns R or L with
probabilities p and 1 — p respectively

e if it visits node again, it must turn the same
way

e can either fix the orientation of the mirrors in
advance, or fix them once particle has passed
through node



= 1s the particle localized, or can it escape to
infinity? <«

e for this particular model, escape possible only

ifp:%



Quantum Version
e Hilbert space He of states on each edge e

H — @eHe

e propagation through a node n described by an
S-matrix:

Sn(e',e) : He — H
with
S Sple! e)1Su(e, e) =1
e propagation along an edge e described by

Ue : He — He

e full evolution operator U is a direct sum over
edges and nodesof 1® ... ®U.,®...®1 and

1®...05,® ... 1.



Green’s function

Gleo,eq;2) = {ea](1 — 2U) Hey)

e (G may be expanded in powers of z as a sum
of Feynman paths on G from ey to e9, each
weighted by a product of U, for each edge and
elements of \S,, for each node

—a given edge may be traversed more than
once

o if G is closed , eigenvalues €, of U are on unit
circle: density of states

,0(16) =3 '5(6 — Ej) =
e lim Tr(G(e,e;z) — Gle,e;1/27))

7Tg z—>e7f€



Transport properties

Consider an open graph G with open edges {ej, }
and {eout }.

‘Transmission matrix
t = (eout|(1 —U) ™ fein)
Landauer formula for conductance
g = Trt't = Tr Gleout, ein; 1) Gleout, ein; 1)

e interference effects between different Feynman
paths make this problem hard

o if all the U, and S,, are independent random
variables in general this leads to Anderson lo-
calization: e.g. on an infinite planar graph all
states are localized: g — 0 as |equt — €in| —
0.

e however this can be evaded if the single-particle
hamiltonian H satisfies special symmetries



Examples

1. particle in a strong magnetic field (quantum
Hall effect)

H=—iA-Vi+ V()

so Hiy = —H_y: if distribution of V' is symmet-
ric about 0 then states =F are paired: £ = 0
is special and can be delocalized even in two di-
MENSsIONS

e corresponding network model (Chalker-Coddington
model) is on a fully directed graph G, with
Ue € U(1) being quenched random variables:
this model is unsolved for any interesting graphs



2. (subject of this talk)
— suppose there exists a symmetry (class C)

oyHoy=—H *
Corresponding class C network model:

e take each He to be 2-dimensional (e.g. particle
is an electron with spin)

e U, € SU(2), quenched random variables with
Haar measure on SU(2)

e wlog can choose Sy, diagonal in SU(2) indices,
so Sp, € O(N) for a node with N incoming
and N outgoing edges
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Theorem 1. The mean of G(ey,eq;z) van-
1shes unless ey = eg, 1n which case it 1s given

by

2 — ZT(G)wT(G) 22‘7(6)‘ ‘Z‘ <1

TrGle, e z) = —2|7(e)] 2| > 1

Fr(e)Wr(e) #
where the sums are over all closed trails T(e)

rooted at e and Wr(e) 1s gven by the product
over all the nodes on 7(e) of Q2(Ip.r; Jn:r)

_ Tn:r o
— <_ 1) ngn;T Sﬁn;T(])a] <det S]n;ﬂjn;7>

11



Remark. X1 Q(In; Jp) =1

Example

BN 4 BN 4

1 2 1 2
(a) (b)

(a) gives  S31 (S31) = S5
(b) gives S31549 (531549 — S32541) = S5
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Theorem 2. The mean point conductance g

between ey, and eqyt 1S the sum of over all open

trails connecting the two edges, weighted as in
Theorem 1.

Mean conductance is equal to the
probability that a trail starting at ¢;,
reaches e .
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Proof uses special properties of SU(2) matrices:

e oroup manifold is S3: any such matrix may be
parametrized as
U=¢e9""=cosal+isinao- n
where o = (07, 09, 03) are Pauli matrices and

nec S

e any real linear combination of SU(2) matrices
is equal to a real number times an SU(2) ma-
trix

e Haar measure is uniform measure on S3
cos” o dadQy = %(1 — cos 2a)dadS 2y

® SO
1 . p=10
UP = —%  p=2

0 - otherwise

Therefore if G = G(egut, €in; 1),

<
Q3

= —2G? = (det G)? 1
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Simple Example

G = cUsU; + z(—s) s UsUsUy
+2%((—s) s UsUpUpUy + -+

¢ (Usl)* + 2° s* (UslaUy)°
—22 52 A (U UsUs U Uy + UsUsUsU L USUY) +
Write UsU1U3UUsU = (UgUl) (U UQUl)

G7 = ()’ + (s’ — 2=’

SO

GTG = cos? 0 + 2% sin 0
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Equivalent classical problem

7S AN

C S

Probability that trail from e;;, ends at eqyt

= (32 + 2232

(=1ifz=1).
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Proot for a general graph uses
supersymmetry

o write (1 — 2U)~! as a gaussian integral over
variables bp(e) and by (e) localized at the ends
of each edge:

_ /He[dbL(e)][dbR@)]bL(ez)bTL(el) eWh
[1.[dby(e)][dbg(e)] Vs

G

where Wy = Weqee + Wiode with
Wedge = 22 b2<€>U€bR<€>
Wiode = anazzj bj{%a(ei)(sn)ijb[/a(ej)

and the integration is wrt the coherent state mea-
sure

[[db] = (1/72)fe " 114dRe by dIm by

e however in this form it is difficult to average
over the U,
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e introduce corresponding anticommuting Grass-
mann variables fr r.(e), fr r(e)

with )
[ldf) = j dfdfe~!/
so that
/ldf1f = 11df1f = 0;
ldf1 1= [ldf1ff =1
Then

G(eg,e1) = [l |dbr(e)l|dbgr(e)]|dfL(e)l|dfr(e)]
by (e2)bh (e1) Vo Ws

o W}, + Wy is invariant under global supersym-
metry rotations.
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Quenched average over the U,

On each edge we have
[dU exp(zblUbp + 2f1U fR)

Lemma: this equals

1+
32205110 — biaf11)(bR1 fRO — RO fR1)
+22(fr1fr2) (frofR1)

e interpretation: after averaging, all that can
propagate along a given edge 1s:

— 1, or
— a fermion-boson pair (1/v/2)(by fo — f1b2)

— a fermion-fermion pair f1fo
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e to compute CQ, we can follow the propagation
of (e.g.) a fermion-fermion pair

e it follows a trail through G

e at a given node, we contract the incoming f1 fo
pairs on edges J onto the outgoing fi fo pairs
on edges I using Wick’s theorem

e this gives rise to the factors €2(7; J) in
Theorem 1.
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