QUANTUM AND CLASSICAL NETWORK MODELS

John Cardy

Theoretical Physics, Oxford & IAS

math-ph/0406044, to appear in Comm. Math. Phys.

Earlier work by Gruzberg, Ludwig, Read; Beamond, JC, Chalker

This talk is about some mathematical results on particle transport in random media

- propagation of a particle in a random medium is often modeled by a *network*:
- ullet medium represented by some fixed graph ${\mathcal G}$ with ${\mathcal E}$ edges and ${\mathcal N}$ nodes
- \bullet at each tick of the clock, the particle moves through one node, from edge e to edge e' say

Classical Version

• specify transition probabilities $\Omega_n(e \to e')$ at each node n, with

$$\Sigma_{e'} \Omega_n(e \to e') = 1$$

- gives a random walk on \mathcal{G} :
 - what is the probability $P(e_1, e_2; T)$ that, beginning at e_1 , particle reaches e_2 after T steps?
- more interesting if the walk is history-dependent, eg:
 - a given edge may be traversed at most once: a *trail*
 - transition probabilities $\Omega_n(e \to e')$ may depend on whether particle has previous visited the node

Example: Hall of Mirrors

- at each node the particle turns R or L with probabilities p and 1-p respectively
- if it visits node again, it must turn the same way
- can either fix the orientation of the mirrors in advance, or fix them once particle has passed through node

- \Rightarrow is the particle localized, or can it escape to infinity? \Leftarrow
- for this particular model, escape possible only if $p = \frac{1}{2}$

Quantum Version

• Hilbert space \mathcal{H}_e of states on each edge e

$$\mathcal{H} = \bigoplus_e \mathcal{H}_e$$

• propagation through a node n described by an S-matrix:

$$S_n(e',e):\mathcal{H}_e\to\mathcal{H}_{e'}$$

with

$$\Sigma_{e'} S_n(e', e)^{\dagger} S_n(e', e) = 1$$

 \bullet propagation along an edge e described by

$$U_e:\mathcal{H}_e\to\mathcal{H}_e$$

• full evolution operator \mathcal{U} is a direct sum over edges and nodes of $\mathbf{1} \otimes \ldots \otimes U_e \otimes \ldots \otimes \mathbf{1}$ and $\mathbf{1} \otimes \ldots \otimes S_n \otimes \ldots \otimes \mathbf{1}$.

Green's function

$$G(e_2, e_1; z) \equiv \langle e_2 | (1 - z\mathcal{U})^{-1} | e_1 \rangle$$

- G may be expanded in powers of z as a sum of Feynman paths on \mathcal{G} from e_1 to e_2 , each weighted by a product of U_e for each edge and elements of S_n for each node
 - -a given edge may be traversed more than once
- ullet if ${\mathcal G}$ is closed, eigenvalues ϵ_j of ${\mathcal U}$ are on unit circle: density of states

$$\rho(\epsilon) = \sum_{j} \delta(\epsilon - \epsilon_{j}) = \frac{1}{4\pi \mathcal{E}} \sum_{e} \lim_{z \to e^{i\epsilon}} \text{Tr} \left(G(e, e; z) - G(e, e; 1/z^{*}) \right)$$

Transport properties

Consider an *open* graph \mathcal{G} with open edges $\{e_{\text{in}}\}$ and $\{e_{\text{out}}\}$.

Transmission matrix

$$t = \langle e_{\text{out}} | (1 - \mathcal{U})^{-1} | e_{\text{in}} \rangle$$

Landauer formula for conductance

$$g = \operatorname{Tr} t^{\dagger} t = \operatorname{Tr} G(e_{\text{out}}, e_{\text{in}}; 1)^{\dagger} G(e_{\text{out}}, e_{\text{in}}; 1)$$

- interference effects between different Feynman paths make this problem hard
- if all the U_e and S_n are independent random variables in general this leads to Anderson localization: e.g. on an infinite planar graph all states are localized: $g \to 0$ as $|e_{\text{out}} e_{\text{in}}| \to \infty$.
- \bullet however this can be evaded if the single-particle hamiltonian H satisfies special symmetries

Examples

1. particle in a strong magnetic field (quantum Hall effect)

$$H = -i\vec{A} \cdot \vec{\nabla}_x + V(x)$$

so $H_V^* = -H_{-V}$: if distribution of V is symmetric about 0 then states $\pm E$ are paired: E = 0 is special and can be delocalized even in two dimensions

• corresponding network model (Chalker-Coddington model) is on a fully directed graph \mathcal{G} , with $U_e \in U(1)$ being quenched random variables: this model is unsolved for any interesting graphs

- 2. (subject of this talk)
- suppose there exists a symmetry (class C)

$$\sigma_y H \sigma_y = -H^*$$

Corresponding class C network model:

- $\bullet \ \sigma_y \mathcal{U} \ \sigma_y = \mathcal{U}^*$
- take each \mathcal{H}_e to be 2-dimensional (e.g. particle is an electron with spin)
- $U_e \in SU(2)$, quenched random variables with Haar measure on SU(2)
- wlog can choose S_n diagonal in SU(2) indices, so $S_n \in O(N)$ for a node with N incoming and N outgoing edges

Theorem 1. The mean of $G(e_1, e_2; z)$ vanishes unless $e_1 = e_2$, in which case it is given by

$$\operatorname{Tr} \overline{G(e,e;z)} = \begin{cases} 2 - \Sigma_{\tau(e)} w_{\tau(e)} z^{2|\tau(e)|} & |z| < 1 \\ \Sigma_{\tau(e)} w_{\tau(e)} z^{-2|\tau(e)|} & |z| > 1 \end{cases}$$

where the sums are over all closed trails $\tau(e)$ rooted at e and $w_{\tau(e)}$ is given by the product over all the nodes on $\tau(e)$ of $\Omega(I_{n;\tau}; J_{n;\tau})$

$$\equiv (-1)^{\pi_{n;\tau}} \prod_{j \in J_{n;\tau}} S_{\pi_{n;\tau}(j),j} \quad (\det S_{I_{n;\tau},J_{n;\tau}})$$

Remark. $\Sigma_{I_n}\Omega(I_n;J_n)=1$

Example

(a) gives
$$S_{31}(S_{31}) = S_{31}^2$$

(b) gives
$$S_{31}S_{42} (S_{31}S_{42} - S_{32}S_{41}) = S_{31}^2$$

Theorem 2. The mean point conductance \overline{g} between e_{in} and e_{out} is the sum of over all open trails connecting the two edges, weighted as in Theorem 1.

Mean conductance is equal to the probability that a trail starting at $e_{\rm in}$ reaches $e_{\rm out}$.

Proof uses special properties of SU(2) matrices:

• group manifold is S_3 : any such matrix may be parametrized as

$$U = e^{i\alpha \sigma \cdot \mathbf{n}} = \cos \alpha \mathbf{1} + i \sin \alpha \sigma \cdot \mathbf{n}$$

where $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ are Pauli matrices and $\mathbf{n} \in S_2$

- any real linear combination of SU(2) matrices is equal to a real number times an SU(2) matrix
- Haar measure is uniform measure on $S_3 \propto \cos^2 \alpha \, d\alpha d\Omega_{\mathbf{n}} = \frac{1}{2}(1 \cos 2\alpha) d\alpha d\Omega_{\mathbf{n}}$
- so

$$\overline{U^p} = \begin{cases} 1 & : & p = 0 \\ -\frac{1}{2} & : & p = 2 \\ 0 & : & \text{otherwise} \end{cases}$$

Therefore if $G = G(e_{out}, e_{in}; 1)$,

$$\overline{G^{\dagger}G} = -2\overline{G^2} = \overline{(\det G)^2} \, \mathbf{1}$$

Simple Example

$$G = c U_3 U_1 + z(-s) s U_3 U_2 U_1 +z^2 ((-s) c s U_3 U_2 U_2 U_1 + \cdots)$$

$$G^{2} = c^{2} (U_{3}U_{1})^{2} + z^{2} s^{4} (U_{3}U_{2}U_{1})^{2}$$

$$-z^{2} s^{2} c^{2} (U_{3}U_{1}U_{3}U_{2}U_{2}U_{1} + U_{3}U_{2}U_{2}U_{1}U_{3}U_{1}) + \cdots$$
Write $U_{3}U_{1}U_{3}U_{2}U_{2}U_{1} = (U_{3}U_{1})^{2} (U_{1}^{-1}U_{2}U_{1})^{2}$

$$\overline{G^2} = (-\frac{1}{2})c^2 + z^2(-\frac{1}{2})s^4 - 2(-\frac{1}{2})^2s^2c^2$$

SO

$$\overline{G^{\dagger}G} = \cos^2\theta + z^2\sin^2\theta$$

Equivalent classical problem

Probability that trail from $e_{\rm in}$ ends at $e_{\rm out}$

$$=c^2+z^2s^2$$

$$(= 1 \text{ if } z = 1).$$

Proof for a general graph uses supersymmetry

• write $(1 - z\mathcal{U})^{-1}$ as a gaussian integral over variables $b_R(e)$ and $b_L(e)$ localized at the ends of each edge:

$$G = \frac{\int \Pi_{e}[db_{L}(e)][db_{R}(e)]b_{L}(e_{2})b_{L}^{\dagger}(e_{1}) e^{W_{b}}}{\int \Pi_{e}[db_{L}(e)][db_{R}(e)] e^{W_{b}}}$$

where $W_b = W_{\text{edge}} + W_{\text{node}}$ with

$$W_{\text{edge}} = z \Sigma_e b_L^{\dagger}(e) U_e b_R(e)$$

$$W_{\text{node}} = \Sigma_n \Sigma_a \Sigma_{ij} b_{Ra}^*(e_i) (S_n)_{ij} b_{La}(e_j)$$

and the integration is wrt the coherent state measure

$$\int [db] = (1/\pi^2) \int e^{-b^{\dagger}b} \Pi_a d \operatorname{Re} b_a d \operatorname{Im} b_a$$

• however in this form it is difficult to average over the U_e

• introduce corresponding anticommuting Grassmann variables $f_{R,L}(e)$, $\bar{f}_{R,L}(e)$

with

$$\int [df] = \int d\bar{f} df e^{-\bar{f}f}$$

so that

Then

$$G(e_2, e_1) = \int \prod_{e} [db_L(e)] [db_R(e)] [df_L(e)] [df_R(e)]$$
$$b_L(e_2) b_L^{\dagger}(e_1) e^{W_b + W_f}$$

• $W_b + W_f$ is invariant under global supersymmetry rotations.

Quenched average over the U_e

On each edge we have

$$\int dU \, \exp(zb_L^{\dagger} U b_R + z\bar{f}_L U f_R)$$

Lemma: this equals

$$\begin{array}{l} 1 + \\ + \frac{1}{2}z^{2}(b_{L1}^{*}\bar{f}_{L2} - b_{L2}^{*}\bar{f}_{L1})(b_{R1}f_{R2} - b_{R2}f_{R1}) \\ + z^{2}(\bar{f}_{L1}\bar{f}_{L2})(f_{R2}f_{R1}) \end{array}$$

- interpretation: after averaging, all that can propagate along a given edge is:
 - -1, or
 - a fermion-boson pair $(1/\sqrt{2})(b_1f_2 f_1b_2)$
 - -a fermion-fermion pair f_1f_2

- to compute \overline{G}^2 , we can follow the propagation of (e.g.) a fermion-fermion pair
- ullet it follows a trail through ${\cal G}$
- at a given node, we contract the incoming $\bar{f}_1\bar{f}_2$ pairs on edges J onto the outgoing f_1f_2 pairs on edges I using Wick's theorem
- this gives rise to the factors $\Omega(I;J)$ in Theorem 1.