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‘Geometric’ critical phenomena: random spa-
tial processes where either:
e we ask questions about geometrical proper-

ties, eg clustering in percolation:
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or
e the probability distribution is geometrical in
nature (eg self-avoiding walks of a fixed

length, all weighted equally)

SAW in plane - 1,000,000 steps
&7

e percolation relevant to disordered media
e SAWs relevant but to polymer physics
But emphasis in this talk 1s on understanding

the nature of their fractal geometry.



OUTLINE

e expectations for ‘geometric’ critical behaviour

from conventional critical behaviour:

e some (non-rigorous) results from (conformal)

field theory (in 2D);

e cluster boundaries and Coulomb gas

methods;

e direct construction of continuum limit of clus-

ter boundaries (SLE);

e rigorous and new results for percolation;

e some provocative conclusions



‘Geometric’ vs. ‘conventional’

critical behaviour

® [Fortuin-Kastelyn] (J-state Potts model <

Random Cluster Model:

lust
Z = <Q|C w ers')percolation

() — 1 & percolation.

® [de Gennes] O(n) model < Self-Avoiding Loops:
4 = <n|loops|>100p gas

n =1 & Ising model;
n — 0 single self-avoiding loop.

Dictionary Examples

Cluster size < susceptibility o< (p — pc)_V(Q)

Radius < correlation length ~ mass” (n)



Critical Behaviour &

Euclidean Field Theory

e Near-critical lattice model, correlation length

£ > lattice spacing a: continuum limat

(p(11) ... d(TN))QFT

- a—)g,iénﬁxed a"(S(r1) - SN Nattice

e emphasis on correlation functions of local (or
quasi-local) operators and their algebra encoded
1in the OPE.

e proved in very few examples, but if assumed
has many powertul consequences: RG, univer-
sality, and scaling;:

off-critical behaviour <

decay of correlation functions at critical point

= conformal field theory:.
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Conformal Field Theory

e in local classical field theories, scale invari-

ance = Tﬁ = (0 = conformal mvariance.

e CF'T assumes this holds (up to conformal
anomaly c¢) in the theory including fluctua-

tion effects.
e Operators < States correspondence.

e For d = 2, these transform according to reps

of infinite-dimensional Virasoro algebra.

e Classification problem: given some critical
lattice model, to which CFT does it corre-
spond?

® [Friedan,Qiu,Shenker] Reflection positivity (eg.
Q = 2,3,4 orn = 1,2) = unitary reps
= discrete series; null states = linear dif-
ferential equations for correlation functions
[Belavin,Polyakov,Zamolodchikov].
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e But percolation, SAWSs, and related models
are not unitary: in fact they have Z =1 (¢ = 0)
even though correlations are nontrivial!

e non-unitary ¢ = 0 CFTs are very poorly
understood but are important not just for per-
colation and SAWSs, but for all critical prob-
lems with quenched disorder (e.g. quantum

Hall transition)



The Crossing Formula

in Percolation

e Given a simply connected region D of the
plane, with suitably smooth boundary 0D, with
4 marked points C';, what is the probability of
a spanning cluster connecting C'{Cy with C3Cy
(in the limit lattice spacing — 0)7



e CEF'T Conjecture [cardy 1992] : conformally
map interior of D into unit disc, marked points
Cj — z;. Crossing probability depends only
anharmonic ratio nn = z19234/213294 and is
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e assuming scaling continuum limit exists and

1s given by a CE'T with ¢ = 0;

e realising that crossing probability is related

to a difference of partition functions of the
() — 1 Potts model, with different bound-

ary conditions;
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e realising that states of the CFT induced by
changes in the boundary condition (“bound-
ary condition changing operators”) also should

correspond to Virasoro reps;

e guessing the right rep = differential equa-

tion.

e formula numerically verified to high precision,
but hard to see how to make arguments rigor-

ous, or to go beyond them.
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Cluster Boundary Approach

1) ‘Coulomb gas’ method [den Nijs, Nienhuis,

Duplantier, Saleur, Kondev, .”]

e cluster boundaries in random cluster model
(or loops in O(n) model) form a gas of closed

loops.

e randomly orientate = height model h(r) €

integers:

e factors of () (resp. n) can be associated with

local (but complex!) Boltzmann weights;



e assume 1n continuum limit that A € R, and
measure — exp(—g/(0h)?d%r);

e a c=1CFT, with, however, charge at oo,
screening charges, etc., which make 1t non-
trivial;

e critical exponents calculable, eg voaw = %
Nienhuis] and Vpere = % [den Nijs];

e Hut correlation functions ambiguous, hard to

make rigorous.

e nevertheless still new results: eg distribution
of internal areas of loops: density n(A) of

large loops with area > A
n(A) ~C/A  C universal
where [cardy,Ziff]

Cpere = 1/8y/3m = 0.0229720 predicted
= 0.022972(1) measured
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2) Dynamical description of cluster

boundaries

e random walker lays down the configuration

as 1t moves: black sites to the L, white to

the R;

e the path automatically reflects from itself;

e how to characterise the continuum

limit of these paths?
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STOCHASTIC LOEWNER EVOLUTION

(SLE) [Schramm; Lawler, Werner]

For definiteness, consider the half-plane with
black sites along x < 0 and white sites along

x > 0. Path starts at origin:

e rather than writing an equation for the path,
consider the (unique) conformal mapping z —
g(z;t) which sends {region of the half-plane
which has not been excluded by the path} —
{upper half-plane}.
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e dynamics on conformal mappings:

dg(z;1) B 2

ot glz:t) —alt)

o if a(t) is real continuous function, the ex-

cluded region of the half-plane grows with

Increasing t;

e a(t) must be Brownian motion, ie @ = ((¢)

with C(t)C(t) = ko (t — ).

® [Rohde & Schramm|

If 0<k<4 pathissimple
4 < k < 8 1t touches itself
8 < r 1t fills space

e fractal dimension = 1+ /8 (for k < 8).

e only for k = 6 does the SLE path not ‘feel’
where the boundary of the domain is as long

as 1t does not hit it = Conjecture [schramm]
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SLEg; is the conformally invariant
continuum limit of percolation

cluster boundaries

e one can compute with SLE all previously
conjectured critical exponents at p. (and with
the help of rigorous scaling relations [Kesten],
exponents away from p.) (including multi-
fractal irrational but algebraic exponents (re-
lated to 2d quantum gravity [Duplantier talk]))

and some new ones, eg.

e backbone exponent [Lawler, Schramm, Werner] (frac-
tal dimension of the part of the infinite clus-
ter which would carry electric current) — given
by the lowest eigenvalue of a 2d Dirichlet
problem (and probably not a rational or an

algebraic number!)
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e SLE and the crossing formula:

|
- a 0 b

Pr(white crossing (—oo,a) < (0,b)
= Pr(a gets excluded before b)

e this gives the same 9F% formula as conjec-

tured from CFT.
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The missing link: Smirnov’s proof of

the crossing formula

Smirnov proved that the crossing formula holds
for the continuum limit of site percolation on
a triangular lattice = SLEg 2s the continuum
limit of percolation cluster boundaries = all

the results derived from SLEg are rigorous.

® [Carleson| crossing formula is simple in an equi-

lateral triangle
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e it 1s the boundary value of an analytic func-
tion P(z): what is the interpretation for z
not on boundary?

P(z) = Pr(z separated from C;Cy by at
least one cluster spanning from C;C4 to CyCy)

® [smirnov] on the triangular lattice, P(z) sat-
isfies linear relations = itscontinuum limit
exists, and 1s the real part of a harmonic
function.
Boundary conditions then determine P(z) o

distance from C[C}y = crossing formula.
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Other values of

e Self-Avoiding Walks: uniform measure on
set of simple paths must remain uniform when
restricted to a subset. Ifthe continuum limit
1s SLE,, then k = % = all the conjectured
results for SAWs (and more) [Lawler, Schramm,

Werner|.

e [sing model: conjectured to be SLEg = all
the standard results and some new ones: eg

Pr(domain wall passes above z).

e but these results need analogue of Smirnov’s

proof to be made rigorous.

21



FINAL REMARKS

Progress in rigorous results for critical

exponents:

e 1944 ﬁ 2d ISng model [onsager, Yang, ..]

e 1963 ff: many exact, but non-rigorous

lattice results [Baxter,..]

e 2001: rigorous results for 2d percolation

[Kesten,Smirnov,Lawler,Schramm,Werner,.. ]

Why are rigorous results important?
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Progress in QFT and critical behaviour:

e 1969 ff. Renormalisation group [wilson, ..]:
— a non-rigorous framework in which to un-
derstand many important features of critical
phenomena, and do approximate computa-

tions

e 1984 ff: Conformal field theory: — a plethora

of exact but non-rigorous results in 2D

e but: field theory still tied to particle physics
ideas: correlation functions of (quasi-)local
fields, so 1s 1ill-suited to study other objects

(eg crossing formula)

e has QFT outlived 1ts usefulness to generate

new results?

e OR can 1t reinvent itself in the 21st century:

QFT as fractal geometry?
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