Logarithmic CFTs as limits of ordinary CFTs and some physical applications

John Cardy

University of Oxford

IHP, Paris October 2011

mostly arXiv:cond-mat/9911024, 0111031 and some new stuff

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

- this talk will be physical rather than mathematical: how can logCFTs arise in physics?
- viewpoint will be to regard logCFTs as limits of ordinary (albeit irrational) CFTs
- most of the discussion not restricted to two dimensions, although some detailed examples will be
- two main examples:
 - random systems using the $n \rightarrow 0$ 'replica trick'
 - ▶ self-avoiding walks as the $n \rightarrow 0$ limit of the O(n) model
- ▶ both these have partition function Z = 1 (c = 0), and one of the interesting questions is how t, the logarithmic partner of the stress tensor T, emerges in this picture

• I will not address logCFTs with $c \neq 0$ in this talk

LogCFTs in general

- a logCFT is a scale-invariant QFT ($\Theta = T^{\mu}_{\mu} = 0$) where the generator \hat{S} of scale transformations cannot be completely diagonalized, but only brought to Jordan form
- e.g. for a 2×2 cell

$$\hat{S} \left(\begin{array}{c} C \\ D \end{array} \right) = \left(\begin{array}{c} \Delta & 0 \\ 1 & \Delta \end{array} \right) \left(\begin{array}{c} C \\ D \end{array} \right)$$

this has the consequence that (for scalar fields)

$$\begin{array}{rcl} \langle D(r_1)D(r_2)\rangle &\sim & \displaystyle \frac{-2\alpha \log |r_1 - r_2| + O(1)}{|r_1 - r_2|^{2\Delta}} \\ \langle C(r_1)D(r_2)\rangle &\sim & \displaystyle \frac{\alpha}{|r_1 - r_2|^{2\Delta}} \\ \langle C(r_1)C(r_2)\rangle &= & 0 \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where α depends on how *D* is normalised.

Quenched random systems and replicas

► classical stat mech system, energy E[{φ}, {h}]: {φ(r)} are fluctuating degrees of freedom; {h(r)} are quenched random fields drawn from some distribution, e.g.

$$E[\{\phi\},\{h\}] = E_{\text{pure}}[\{\phi\}] + \lambda \int h(r)\Phi(r)d^dr$$

where Φ is some local field and $\overline{h(r)} = 0$, $\overline{h(r)h(r')} = \delta^{(d)}(r - r')$.

we want to compute quenched averages of correlators of local fields, e.g.

$$\overline{\langle \Phi(r_1)\Phi(r_2)\rangle} = \overline{\left(\frac{\operatorname{Tr}_{\phi}\Phi(r_1)\Phi(r_2)e^{-E[\{\phi\},\{h\}]}}{\operatorname{Tr}_{\phi}e^{-E[\{\phi\},\{h\}]}}\right)}$$

this is difficult because of the {h}-dependence in the denominator Z[{h}]

Two ways around this

► (a) find some other degrees of freedom $\{\psi\}$ such that $\operatorname{Tr}_{\psi} e^{-E[\{\psi\},\{h\}]} = Z[\{h\}]^{-1}$, then

$$\overline{\langle \Phi(r_1)\Phi(r_2)\rangle} = \overline{\mathrm{Tr}}_{\phi,\psi} \,\Phi(r_1)\Phi(r_2)e^{-E[\{\phi\},\{h\}]-E[\{\psi\},\{h\}]}$$

The quenched average is now easy. In some cases this leads to a *supersymmetry* between $\{\phi\}$ and $\{\psi\}$.

▶ (b) consider *n* copies of the fields {*φ_a*}, *a* = 1,...,*n*, and note that

$$\overline{\langle \Phi(r_1)\Phi(r_2)\rangle} = \left(\frac{\operatorname{Tr}_{\phi_a}\Phi_1(r_1)\Phi_1(r_2)e^{-\sum_{a=1}^n E[\{\phi_a\},\{h\}]}}{Z[\{h\}]^n}\right)$$

for all integer $n \ge 1$.

if this can be continued to n = 0, we can set the denominator
 = 1, the quenched average is again easy, but now the replicas interact.

Replica group theory

- the symmetry group is S_n
- for $\lambda = 0$, this acts trivially on the non-interacting replicas
- For λ ≠ 0, assume that under the RG the theory flows to a CFT, which, for n ≠ 0, is generically non-logarithmic
- eigenstates of \hat{D} transform according to *irreducible* representations of S_n
- in particular, the multiplet (Φ_1, \ldots, Φ_n) decomposes into

$$\Phi \equiv \sum_{a=1}^{n} \Phi_{n}$$
$$\widetilde{\Phi}_{a} \equiv \Phi_{a} - (1/n) \sum_{a=1}^{n} \Phi_{a}$$

Operator product expansions

 in the non-interacting theory we have the OPE (suppressing indices)

 $\Phi_a(r_1) \cdot \Phi_b(r_2) = \delta_{ab} |r_{12}|^{-2\Delta_{\text{pure}}} \left(1 + \dots + \frac{\Delta_{\text{pure}}}{c_{\text{pure}}} r_{12}^d T_a(r_1) + \dots \right)$

• the coefficient of *T* is fixed by global conformal invariance and is valid in any number of dimensions, if *c* is defined as the coefficient of the 2-point function $\langle T(r_1)T(r_2)\rangle \sim c/r_{12}^{2d}$ (suppressing indices).

These are equivalent to

$$\widetilde{\Phi}_{a} \cdot \widetilde{\Phi}_{a} = (1 - \frac{1}{n})|r_{12}|^{-2\Delta_{\text{pure}}} \left(1 + \frac{\Delta_{\text{pure}}}{nc_{\text{pure}}}r_{12}^{d}T + \frac{\Delta_{\text{pure}}}{c}r_{12}^{d}\widetilde{T}_{a} + \cdots\right)$$

$$\Phi \cdot \Phi = n|r_{12}|^{-2\Delta_{\text{pure}}} \left(1 + \frac{\Delta_{\text{pure}}}{nc_{\text{pure}}}r_{12}^{d}T + \cdots\right)$$

where T and \tilde{T}_a are the corresponding irreducible linear combinations of the T_a . In the interacting theory these deform to

In the interacting theory these deform to

$$\begin{split} \widetilde{\Phi}_a \cdot \widetilde{\Phi}_a &= (1 - \frac{1}{n}) |r_{12}|^{-2\widetilde{\Delta}(n)} \left(1 + \frac{\widetilde{\Delta}(n)}{c(n)} r_{12}^d T + B(n) r_{12}^{d+\delta(n)} \widetilde{T}_a + \cdots \right) \\ \Phi \cdot \Phi &= n |r_{12}|^{-2\Delta(n)} \left(1 + \frac{\Delta(n)}{c(n)} r_{12}^d T + \cdots \right) \end{split}$$

where $(\Delta(n), \tilde{\Delta}(n), d, d + \delta(n))$ are the dimensions of $(\Phi, \tilde{\Phi}_a, T, \tilde{T}_a)$ respectively and c(n) is the central charge of the interacting theory.

If we look at the 2-point functions we have

$$\begin{aligned} \langle \Phi_1(r_1)\Phi_1(r_2) \rangle &= \langle \widetilde{\Phi}_1 \widetilde{\Phi}_1 \rangle + \frac{1}{n^2} \langle \Phi \Phi \rangle = (1 - \frac{1}{n}) \frac{1}{|r_{12}|^{2\tilde{\Delta}(n)}} + \frac{1}{n} \frac{1}{|r_{12}|^{2\Delta(n)}} \\ \langle \Phi_1(r_1)\Phi(r_2) \rangle &= \frac{1}{n} \langle \Phi \Phi \rangle = \frac{1}{|r_{12}|^{2\Delta(n)}} \\ \langle \Phi(r_1)\Phi(r_2) \rangle &= \frac{n}{|r_{12}|^{2\Delta(n)}} \end{aligned}$$

But

$$\lim_{n \to 0} \langle \Phi_1(r_1) \Phi_1(r_2) \rangle = \overline{\langle \Phi(r_1) \rangle \langle \Phi(r_2) \rangle}$$
$$\lim_{n \to 0} \langle \Phi_1(r_1) \Phi(r_2) \rangle = \overline{\langle \Phi(r_1) \Phi(r_2) \rangle - \langle \Phi(r_1) \rangle \langle \Phi(r_2) \rangle}$$

and these had better be finite!

• as
$$n \to 0$$
, $\Delta(n) - \Delta(n) \to 0$, and

$$\langle \Phi_1(r_1)\Phi_1(r_2)\rangle \sim \frac{-2\alpha \log |r_{12}|}{|r_{12}|^{2\Delta(0)}} \quad \text{where} \quad \alpha = \tilde{\Delta}'(0) - \Delta'(0)$$

• (Φ_1, Φ) are an example of a *logarithmic pair*.

The ' $c \rightarrow 0$ catastrophe'

$$\begin{split} \widetilde{\Phi}_a \cdot \widetilde{\Phi}_a &= (1 - \frac{1}{n})|r_{12}|^{-2\widetilde{\Delta}(n)} \left(1 + \frac{\widetilde{\Delta}(n)}{c(n)} r_{12}^d T + B(n) r_{12}^{d+\delta(n)} \widetilde{T}_a + \cdots \right) \\ \Phi \cdot \Phi &= n|r_{12}|^{-2\Delta(n)} \left(1 + \frac{\Delta(n)}{c(n)} r_{12}^d T + \cdots \right) \end{split}$$

▶ since $\lim_{n\to 0} c(n) = 0$, there is an apparent problem with the coefficient of *T*. This can be resolved in several different ways:

- a) the normalization of the physical fields vanishes as $c \to 0$: this is what happens for $\Phi \cdot \Phi$ above (and for many examples in percolation): no logs
- b) the scaling dimension $\Delta \rightarrow 0$: this happens for the Kac (1, 2) operator in 2d percolation whose 4-pt function gives the crossing formula: no logs
- c) *T* collides with another operator as $c \to 0$, and the leading singularities cancel: this is what happens for $\widetilde{\Phi}_a \cdot \widetilde{\Phi}_a$ above, as long as $\delta(n) \to 0$ and $B(n) \sim 2\Delta(n)/c(n)$. In this case we are left with a term $\propto \delta'(0)r_{12}^{l} \log |r_{12}|$.

In this case T_1 and T form a logarithmic pair: in 2d

$$\langle T_1(z_1)T_1(z_2)\rangle = \overline{\langle T(z_1)\rangle\langle T(z_2)\rangle} = \frac{2c'(0)\delta'(0)\log(z_{12}\overline{z}_{12})}{2z_{12}^4}$$

$$\langle T_1(z_1)T(z_2)\rangle = \overline{\langle T(z_1)T(z_2)\rangle - \langle T(z_1)\rangle\langle T(z_2)\rangle} = \frac{c'(0)}{2z_{12}^4}$$

$$\langle T(z_1)T(z_2)\rangle = 0$$

In 2d logCFT this is usually written, with $t \propto T_1$,

$$\langle t(z_1)t(z_2)\rangle = -\frac{b\log(z_{12}\overline{z}_{12})}{z_{12}^4}$$

$$\langle t(z_1)T(z_2)\rangle = \frac{b}{2z_{12}^4}$$

so that $b = -c'(0)/2\delta'(0)$.

- ► however in this case t is not a holomorphic operator, because T̃_a has dimensions (2 + δ(n), δ(n))
- ▶ *b* is defined within the logCFT *at* c = 0, but the physical quantities c'(0) and $\delta'(0)$ are not

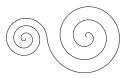
Example II. The $O(n \rightarrow 0)$ model and self-avoiding walks

► the O(n) field theory with integer n is based on a multiplet of fields (φ₁,..., φ_n) and action

$$S = \int \left[\sum_{a=1}^{n} (\partial \phi_a)^2 + m_0^2 \sum_{a=1}^{n} \phi_a^2 + \lambda_0 \left(\sum_{a=1}^{n} \phi_a^2 \right)^2 \right] d^d r$$

- on a lattice, the free theory represents a sum over loops, weighted by $e^{-m_0^2(\text{length})}$ and with a factor *n* for each loop. In this way the model already makes sense for non-integer *n*.
- ► the interaction λ₀ provides a repulsion between different loops and different parts of the same loop: as λ₀ → ∞ we get an ensemble of self-avoiding loops. For m₀² large, these are all small, at a critical value the typical size diverges and we have a CFT in the scaling limit.
- if we compute $\langle \phi_a(r_1)\phi_a(r_2) \rangle$ we get the weighted number of open walks from r_1 to r_2 : at n = 0 these are SAWs.

Smirnov's observable (d = 2)



- Smirnov instead considered the quantity $\langle \psi_a(z_0)\psi_a(z)\rangle$ in which the open walks from z_0 to z are also weighted by $e^{-is\theta_{z_0z}}$ where θ_{z_0z} is the winding angle
- at the critical point and for the correct value of $s (= h_{2,1}(n))$ in the Kac table!), this is a *discretely holomorphic* function of *z*, i.e. obeys a discrete version of the Cauchy-Riemann relations
- *if* this continues to hold in the scaling limit, then
 - a) this can be used to prove that the curves are SLE_{κ}
 - b) we get a holomorphic conformal field (parafermion) $\psi_a(z)$ with dimensions $(h_{2,1}(n), 0)$

Consider now the OPE

$$\psi_a(z_1) \cdot \psi_b(z_2) = z_{12}^{-2h_{2,1}(n)} \left(\delta_{ab} + \frac{2h_{2,1}(n)}{c(n)} z_{12}^2 \delta_{ab} T(z_1) + \cdots \right)$$

- As n→ 0 there is a potential catastrophe, which is avoided in this case by the collision of T with another operator
- ▶ since ψ_a is a Kac (2, 1) operator, this can only be in the list allowed by the fusion rules, and the only candidate is a Kac (3, 1) operator, since $\lim_{n\to 0} h_{3,1}(n) = 2$
- ► this can be identified physically as the deformation of the operator $T_{ab} \propto (\partial_z \phi_a)(\partial_z \phi_b)$ in the free theory: the trace deforms to *T* and the traceless part to \tilde{T}_{ab}
- we can then identify $t \propto T_{11}$, and, since we know both c(n) and $h_{3,1}(n)$, we can compute $b = -c'(0)/2h'_{3,1}(0) = \frac{5}{6}$
- the correlators $\langle tt \rangle$ and $\langle tT \rangle$ can be physically interpreted in terms of SA loops

Summary

- we can understand the appearance of logarithmic behaviour in some CFTs which are limits of regular CFTs
- this involves the presence of a global symmetry under which the operators transform irreducibly in general: however these representations become singular in the limit: logarithms then appear due to collisions of irreducible operators and cancellations in the OPE
- comparison with a non-interacting limit allows the physical identification of these operators
- the $c \rightarrow 0$ catastrophe may be avoided in various ways: when this happens due to the collision of another operator with *T* there is a logarithmic partner *t* (which however is not necessarily holomorphic in 2d)
- ► the parameter $b = -\frac{1}{2}(dc/d\Delta)$ where Δ is the dimension of the operator which collides with *T*

► there are important physical quantities (like c'(0)) which are not in the logCFT

most of this still holds in general dimension d