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e Example 1: random bond ferromagnets

e Example 2: percolation and the spin quan-
tum Hall transition
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Expected behaviour at an ordinary critical
fixed point.

Any real local density ®(r) may always be ex-
panded in a series of scaling operators ®(r) =
S a;0;(r), so that its two-point correlation
function takes the form

(P(r)P(0)) ~ )

1]

Ta:z-—|—a:j

e Scaling dimensions z;: eigenvalues of the
dilatation operator D (usually discrete).

e Conformal invariance: off-diagonal terms
xi#azj = Aij:O.

e Reflexion positivity: A;; > 0.

= only pure powers (or sums of them) should
appear. [NB logs can arise from marginally
irrelevant operators, but these are of form
(14 gInr)Y — vanish at the fixed point.]
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e Relax positivity (e.g. on using replica trick
for a disordered system) — then it is possible

that
Aq Ao Inr
r271 7222 r271

if x1 — x> with Ay ~ —A> — oo such that
Al(aﬁl — 5132) finite.

e [ his happens generically as n — O
in the replica trick and for other similar
problems:

e Percolation (Q — 1 limit of Potts model)

e Self-avoiding walks (polymers — n — O
limit of O(n) model)

[INB Such logs have already been shown to be
possible in some 2d CFT's (e.g. with SUSY).
The n — 0O limit shows how they arise.]
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Example: random-bond Ising model for
2<d< 4.

H ==Y (J+6J,,)s(r)s(r') ~ HO+ / 5J(r)E(r)d%

E(r) = local energy density; dJ(r)éJ(r') =
géwl.

Introduce replicas a=1,...,n and average
Hr=3YHS =g [ Y Ea(r)By(r)d*
a aFb

[9] = yg = d — 22 — relevant if y; > 0 =
Harris criterion dv° < 2.
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= RG flow to random fixed point; perturba-
tion theory valid if yg < 1. For any scaling
operator ¢

2y = g + (2bs/b)yg + O(y7)
where b and b, are the coefficients in the
OPES & ® =14b6P+---and ¢- P = byop+- -+,
and & = Za;‘:b EqFEy.

e Irrespective of validity of PT, the scaling
operators ¢ should be arranged into irreducible
representations of whatever symmetries are
present.

E.g. ¢ ~ energy density E(r) ~ >, s(r)s(r’).
Replica permutation symmetry: {E,} reducible,
because ), E, transforms according to iden-
tity rep. So define

E = ) Eq
a

Eq« = Eo—(1/n)) Ey
b

Then

1
wp + (1= n)yg + 0(y7)

rp(n)

1
r=(n) = 2% + >Yg + O(yg)



(E(r)E(0)) = n((E1E1) + (n—1)(E1ED))
~ nA(n)fr_QxE(n)

(Ea(r)Eq(0)) = (1—1/n) ((E1E1) — (E1E2))
~ (1 —1/n)A(n)r 25

For consistency A(0) = A(0). Subtracting
and letting n — 0O,

(E(r)NE(0)) = lim (Eq(r)Ea(r))
~ 2A(0)a5(0) Inr/r=2w5(0)

NB connected energy-energy correlation func-
tion (— specific heat) is (EFE) — (E){FE) =
(E1FE1) — (E1E>) and contains no log.

(E(r))(E£(0))
(EE)
with a universal coefficient.

~ 22'p(0)Inr



NB Such a phenomenon does not occur for
the correlation functions of the local mag-
netisation s(r), for the RBIM, because sq(r)
transforms irreducibly under larger symmetry

[replica permutations] ® [sq — —sa]™

so that z5(n) = z5(n) for all n.

But. ..



Logarithms are ubiquitous in all
higher correlation functions!

In any CFT (ie, any RG fixed point with ro-
tational symmetry and short-range interac-
tions), the form of the OPE of any scaling
operator with itself is

#(r)-9(0) = (14 4riT 4 ) (x)

where T = stress tensor , scaling dimension
d.

[Follows from (T¢¢) ~ x4 and (TT) ~ ¢/r?d —
all indices have been suppressed.]

¢ (central charge in d = 2) vanishes in any
theory with partition function Z = 1 — eq,

replicas n — 0, Q — 1,

e Obvious problem in (*) as ¢ — 0!



B(r) - $(0) = — 233 (14227 4. (%)

C

Two resolutions:

e a, - 0 as ¢ — 0 - this is what happens
in percolation as Q — 1 — all connected
correlation functions vanish « (Q — 1),
to get percolation connectedness corre-
lations need to take 9/9Q|g=1-

e (generic solution) there are other opera-
tors omitted from (*) which collide with
T as ¢ — 0, and cancel the singularity:

#(r) - $(0) = 55 (1 + 20T + YT 4 )
This is what happens in the RBII\/I.

T = ) Tu the true stress tensor ,zr = d

a
To = Ta—(1/n)> Ty, t7—donlyasn—0



Example:
(s(r1)s(r2))(s(r3)s(r4)) — (s(r1)s(r2)) - (s(r3)s(ra))
d
~ angle — dependent factor x 12734 In 12734
13724 13724

for [rior3a/ri3ros| K 1.

[Such effects, while rather general, are obvi-
ously small].

e Are there scaling operators whose dimen-
sion £ — 0 as ¢ — 0, so they become de-
generate with 1, giving logarithmic effects at
leading order?



Percolation and the random cluster model

Q-state Potts model. s(r) € {1,2,3,...,Q}.

7 = Tr €J Zr’r’ 55(7“),3(7"/)
x TIr (1 + 3353(7"),3(7"’))
/

rr

— Z xno. of bondsQno. of clusters

cluster configs

e Given a rectangular region L x W, on av-
erage how many distinct clusters (N¢) cross
the sample? (Figure). [NB, for L > W we
expect this to be & L, and o« L/W at p = pe.

e Maps onto the mean conductance in a net-
work model of the spin quantum Hall transi-
tion [Gruzberg, Ludwig and Read, PRL 82,
4254 (1999)].



T T

— Electrons move on the links of a directed
L-lattice (Figure).

— At each node they scatter into each of the
two possible channels via a given S-matrix.

— On each link the amplitude gets multiplied
by a random SU(2) matrix.

— Conductance g o< Tr ¥, |G4|%, where G;; =
sum over all paths + — 3, each weighted by
a product of S-matrix elements and SU(2)
matrices along the path.

— Quenched average over SU(2) matrices:
only paths which are hulls of percolation clus-
ters which cross the sample survive = g «
(N¢).
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Boundary conditions on upper and lower edges:

e Free (f): Potts spins unconstrained
e Fixed (1): Boundary spins fixed into state

1.

fo — <QNC+N]_+N2+N[)> Z11 = <QNb>
Zyp = QN2 Zpp = (QN1T )
so that

(Ne) = (0/0Q)|g=1(ZrsZ11/Z 11215)

Periodic boundary conditions in L-direction:
Zij = Tr Tz'Lj ~ eT((c/24)—z;;)(L/W)

where z;; are boundary scaling dimensions.
For L < W only the smallest counts: if : =3
this is x = O.



So
(Ne) ~ (8/8Q)|Q:162W$1f(Q)(L/W)

NB, if (Nc) oc L/W, it must be that z;,(Q =
1) = 0! (and the coefficient is &< (0/9Q)|g=171(Q).

In fact, z1¢(Q) is known for Q = 2,3 to be
x1,2 In the Kac classification. =

(Ne) ~ (V3/4)(L/W)

Result for finite L/W at p = pe:

2(N,) = 1—2—\/§ (In(l— n) + 2 Z E ;m(l :n")m)

where n = (1—-k)?/(1+k)2 and L/W = K(1—
k2) /2K (k?).
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e In general, scaling dimensions like z17(Q),
which — 0 as ¢ — 0, correspond to correlation
functions which measure topological proper-
ties of the system.

Example: in a percolation problem, what is
the probability P(M) that exactly M clusters
must be crossed to connect a given point P
to the boundary? (Figure).

S P(Q™M ~ L@ (or e=#(@for p £ pe)
M

where there is an explicit formula for 2(Q’)
(and z(1) = 0).

o P(M) ~ P(O)(|In(pe—p)|/27)2M /(2M)!, for
M < (M), where P(0) ~ |pe — p|/38, and

o (M)~ (1/3v3m)|In(pe — p)|.

e Similar results for O(n) model (self-avoiding
loops).

= Logarithms everywhere! <



Summary

e Logarithmic factors in correlation functions
occur in all quenched random systems (not
just in 2d) and in other systems described by
ann — 0O limit (self-avoiding walks, percolation,...)

oIn the RBIM they appear in disconnected
correlation functions, not in linear suscepti-
bilities.

eln percolation they describe topological rather
than local properties of clusters (which is why
they haven’'t been seen in most studies).

eIn the mapping of the SU(2) spin quantum
Hall transition to percolation they are essen-
tial in giving a finite conductivity at the crit-
ical point (= band centre).

e A similar mechanism must operate in the
(so far unknown) CFT which presumably de-
scribes the integer quantum Hall transition.
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