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Quantum Entanglement

e quantum system in a pure state |W), density matrix

p =T}V

e complete commuting set of observables: A can ob-
serve a subset A, B the complement B

e in general A’s measurements are entangled with those

of B

e one measure of the amount of entanglement is the
entropy:

e A’s reduced density matrix
pa="lrgp
von Neumann entropy
Sa=—Trapslogps (= 5p)

e other measures of entanglement have been suggested.,
but more difficult to obtain general analytic results



Simple Example

° 2 Spin—% degrees of freedom: A observes one, B the

other
o if [U) =cosf| 1)|]) +sinf] L) 1)
then
Sy = — cos® flog cos” @ — sin” 8 log sin” 6

e 5S4 = 0 for unentangled states, e.g. | 1| |)

e 54 is maximal (= log2) for maximally entangled
states J5(| 1) 1) £ [ D[ 1)

e [Bennett et al.] if supplied with M copies of
this state, by purely local operations and classical
communication, A can produce M’ < M maximally
entangled states, with the optimal conversion ratio

M'|M ~ Sqas M — o0



In this talk we consider the case when the
quantum system is a (cut-off) quantum field
theory in d+1 dimensions, usually in its
ground state

e [Srednicki,1993]: for a massless QFT in d > 1.
S 4 o (surface area of A) AY~1: black hole physics???

e [Holzhey,Larsen,Wilczek,1994]: for a mass-
less d =1 QFT (a conformal field theory),

S~ (c/3)log(Al), where
— ¢ is the central charge of the CFT

— ¢ measures the linear dimension of A
Some of the questions to be addressed:

e for d = 1. what happens

—if A consists of several disjoint pieces?
— if the whole system is itself finite?

— if the theory is massive?

— if the whole system is in a mixed state,

c.g. corresponding to finite temperature?

e for d > 1, what happens if the theory is massive?



von Neumann entropy and Riemann
surfaces

e OFT in 1+1 dimension
o let {¢(x)} be a set of fundamental fields {@(xz)},

their eigenvalues and corresponding ecigenstates be
{6(z)} and @, |{p(x)}) respectively.

e at finite temperature 51, density matrix is

p{ola")" Y o)) = 2(8)7 ({8 e [{o(a')})
where Z(5) = Tre™" H iy the partition function.

e path integral representation:

o= [ldola, 7| T5(0(z, 0)~6(a'))8(6(x, B)—gla")" e~

where Sg = fég Lgdr, with Lg the euclidean lagrangian.

o let (uy,v1), (u2,vs), ... be a set of disjoint intervals
of the line and let A = {¢(z); z € U;(uj,v;)}

e reduced density matrix

pa=/ T dlo(@,0)6(6(x, B) - 6(z,0))

= sew together the edges along 7 = 0, 3, leaving slits
open along each interval (u;, v;) <



Now use

0

Sqp=-T I = — — Tr p'}
A I'pA 108 P4 onl_i P4

e for integer n > 1 the rhs is given by n copies of the
path integral for Sy, sewn together cyclically along
the slits: an n-sheeted Riemann surface




e this has a unique continuation to Ren > 1, and its
derivative at n =1 gives Sy4:

_9 (Zn)
on l,—=1 Z{l

where Z,, is the (unnormalised) partition function on
the n-sheeted surface

Sy =

e in this ratio, the worst of the UV divergences in
In Z, (ox A?) cancel, leaving only log divergences

e as § — oo, all IR divergences cancel



CFT on n-sheeted Riemann surface

e branch points are orbifold points in string theory
whose target space is (CFT)"

e for ¢ = 1, need to compute det(—V?) on the Rie-
mann surface

e instead, consider the expectation value of the stress
tensor (T')

Simplest example: a single slit (u,v)

e conformal mapping w — z = ((w —u)/(w — v>>1/n
uniformises the n-sheeted surface

T(w) = (dz/dw)* T(2) + 5{z,w},
where {z, w} = Schwartzian derivative (2" 2/ —32"%)/ 2.

(T(2))c =0 = :

(1= (1fn?) (-
<T(w)> = 24 (w— u)2(w — v)?

e compare with the form of the correlator of 1" with 2
primary fields (conformal Ward identity):

(T(w)P,(u)®_p(v))  Ag(v—1u)’
<(Dn<u)q)—n<v)> (w — U)Q(w - U)Q




e conformal WI completely determines transformation

properties under conformal mappings w — w' =
w + a(w) which are the same on each sheet, by

insertion of

(1/27mi) [ T(w)a(w)dw + cc.

Z,/77 transforms in the same way as
(D, (u)®_,(v))", where ® has scaling
dimension Ag = ¢(1 — (1/n)*)/24

In the plane,

7z a \(¢/6)(n=1/n)
zi =it
where ¢; = 1, so

Sa=(c/3)log ((v—u)/a) +¢

UV—1Uu



Results for related geometries
Under a conformal mapping w — f(w)

(P(wy)P(w2)) = | f'(wi)[*2] £ (wa) P2 f (wr))D(f (w2)))

and same is true for 7, /27
e cg. f(w)=(0/2m)logw maps plane to a cylinder
with 0 <7< (
e = result at finite temperature:

Sa1=(c/3)log ((B/ma)sinh(nl/G)) + ¢

where ¢ = v — .

o for{ >> 3,54 ~ mel/33 [Blote,JC,Nightingale
;Affleck;1986]

—or, at zero temperature, but in a finite system of length
L with periodic be:

Sa = (c/3)1og ((L/ma)sin(nl/L)) + ¢
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Similar results for open boundaries:

e semi-infinite system z > 0, slit from 0 to v:

Za|Z7 o< (D ()" ~ (20)72

SO

S4~ (c/6)In(v/a)

e conformally map this to a finite system of length
L. divided into an interval A of length ¢ and B of
length L — ¢:

A B

~|—==—L-F

Sa4=(c/6)log ((L/ma)sin(nl/L)) + 29 + ¢
(9 = boundary entropy.)
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General case
e A is the union of N intervals (u;, v;)
e uniformising transformation has the form
z = [I{w — wy)™*
k
where ©; ap = 0, wy = u; or v;.
e compute (T'(w)) from Schwartzian derivative

e under what conditions does this have the form of
conformal Ward identity (T (w) 1y &5 (wy))?

e theorem: this happens iff a = *« for each k:
e this is precisely the case we need, with o = 1/n
SO

N Hj<k(uk. — u])(”k — Uj) (¢/6)(n—1/n)

! Oj<k(Vk — uy)

Trply ~ ¢

from which S 4 follows by differentiation wrt n.



Massive field theory in 14+1 dimensions

e explicit calculations e.g. for quantum spin chains
show that S4 — a finite limit as /4 — oo, if the
correlation length € (oc (mass m)™!) is finite

e how does this limit behave as m — 07

e use simplest geometry: infinite system with A =

(0,0), B = (—00,0)

e Ricmann surface consists of n planes sewn together
along negative real axis

-

e use properties of stress tensor:

o for n =1, (T) = (T..) = 0, but (8) = (T#) £ 0,

I
reflecting breaking of scale invariance

o forn > 1

(T(z,2)) = F,(22)]2°
(O(z,2)) — (O)1 = G(22)/(22)



Conservation equation
(22) (F,, +1G,) = ;G

e expect Fy, and G, — 0 exponentially fast for |z| >
m~!, while as |z| — 0, F,, — (¢/24)(1 — n™?)

)

G, — 0

)

[ ({8)n = (©)1) R = —mn(c/6)(1 —n™?)
But the lhs is just —(0/0m)(log Z,, — nlog Z1), so
Zin _
Z_? _ Cn<ma>(c/12)(n 1/n)
and finally
S~ —(c/6)log(ma)

e if A consists of a number of intervals each of length
> m~!, we expect above result to be multiplied by
the number of boundary points between A and B
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Example - massive free field theory
S=[1((8up)* +m’p*)dr
Use
0 1

log Z, = =5 [ Gy(r,r)dT

where G,(r, ') is the two-point correlation function in
the n-sheeted geometry:

G,(r,r) = é@ di 1y (mr) K (mr)

e sum over k is divergent, but formally we get

[ d'r G(T):%dk/]k/n(mr)Kk/n(mr)rdr = %dkk

Inm?

e interpreting the sum as 2((—1) = —%, we agree with

the general result with ¢ =1

e can be done properly by cutting off sum over k: UV
divergence then cancels in the correct combination

G, — nG1 which gives (0/0m?)log(Z,/Z})

e result also verified for lattice models solvable by
Baxter’s corner transfer matrix method: in this case
complete spectrum of py4 is known, even for £ ~ a

e free-field case can also be used to analyse effects of
finite system size
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Higher dimensions

e cxample: massive free field theory with A = half-
space x > 0, d — 1 other dimensions |

e Fourier transform wrt 2, — effective mass m? + k%

dd_lkJ_ k%_ + m?

1 d—
Sa=—qp dr] )1 B2 g A2
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e S, o surface area A = 5 d | [Srednicki]

o coefficient UV divergent oc A?~1

e but there is a finite non-leading term oc m?=!

e conjecture (a simple generalisation of ordinary scal-
ing for the free energy):

for any massive QFT in d > 1, the leading
singular term in S,/ A goes like m?~! with a
uniersal coefficient
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Summary

e von Neumann entropy is an analytically tractable
measure of entanglement

o for 1d systems whose continuum limit is a 1+1-
dimensional relativistic QFT its form can be com-
puted in many cases

e this is universal and proportional to ¢, which counts
the number of massless UV degrees of freedom

e intimately related to stress tensor
e higher dimensions: universal behaviour?

e arc other measures of entanglement also related to
c?
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