SCHRAMM-LOEWNER EVOLUTION CALOGERO-SUTHERLAND MODELS and CFT

John Cardy All Souls College & Theoretical Physics, Oxford

Outline.

- brief introduction to SLE
- radial SLE
- multiple SLEs and Dyson's process
- realization of Dyson's ensemble in 2D critical systems
- relation to CFT and C-S model

Some of this work is in math-ph/0301039
These overheads available at
http://www-thphys.physics.ox.ac.uk/users/
JohnCardy/home.html

2D critical systems as loop gases

Many 2D critical systems can be realised as gases of random self-avoiding non-intersecting loops and open curves, eg:

- Q-state Potts model: boundaries of Fortuin-Kasteleyn clusters
 - -Q = 1: boundaries of percolation clusters
- 'high-temperature' graphs of O(n) model
 - -n=2: level lines of a random surface at the roughening transition
 - -n = 1: (dual to) boundaries of critical Ising spin clusters
 - -n = 0: self-avoiding random walks

Schramm (Stochastic) Loewner Evolution (SLE)

[Lawler, Schramm, Werner]

- SLE is a theory of the *continuum limit* of random curves in 2D lattice models
- ullet it assumes and exploits $conformal\ invariance$
- so far, proved in only a few cases, but if limit exists and is conformally invariant, it is given by SLE.

SLE in the half plane (chordal SLE)

- example: Ising domain wall conditioned by the boundary conditions to start at 0 and end at ∞ .
- exploration process: ensemble of non-crossing paths can be generated dynamically
- SLE describes the continuum limit of this process

- let K_t be the 'hull' of the curve up to time t (= the curve \cup any regions enclosed by curve)
- [Riemann] there is a conformal mapping $g_t: H \setminus K_t \to H$, normalized such that

$$g_t(z) \sim z + \frac{2t}{z} + \cdots$$
, as $z \to \infty$

• [Loewner] evolution of $g_t(z)$ satisfies

$$\frac{dg_t(z)}{dt} = \frac{2}{g_t(z) - a(t)}$$

with a(t) a real continuous function which characterizes K_t .

• [Schramm] if the law of the path is conformally invariant, then a(t) must be a 1D Brownian motion

- law of g_{t+t_0} same as law of g_t
- scale invariance: $z \to \lambda z$, $t \to \lambda^2 t$ \Rightarrow law of $\lambda^{-1}a(\lambda^2 t)$ same as law of a(t).
- only solution is Brownian motion: $\dot{a}(t) = \eta(t)$, with $\langle \eta(t')\eta(t'')\rangle = \kappa\delta(t'-t'')$
 - ⇒ Problems in 2D critical systems reduced to problems in 1D Brownian motion

Some simple properties of SLE:

- fractal dimension of the trace is $1 + \kappa/8$ ($\kappa \leq 8$)
- for $\kappa \leq 4$ it is a simple curve and does not touch the real axis (almost surely)
- for $\kappa > 4$ it repeatedly touches itself and the real axis: every point in **H** eventually is swallowed by the hull K_t
- different values of κ correspond to different universality classes of 2D critical behavior:
- Q-state Potts model: boundaries of FK clusters $\sqrt{Q} = -2\cos\frac{4\pi}{\kappa}$, with $4 \le \kappa \le 8$
 - boundaries of percolation clusters $\kappa = 6$
- 'high-temperature' graphs of O(n) model, $n = -2\cos\frac{4\pi}{\kappa}$, with $2 \le \kappa \le 4$
 - -n=2: level lines of a random surface $\kappa=4$
 - -n=1: boundaries of Ising spin clusters $\kappa=3$
 - -n = 0: self-avoiding random walks $\kappa = \frac{8}{3}$
- central charge of corresponding CFT

$$c = 1 - 6\left(\frac{\sqrt{\kappa}}{2} - \frac{2}{\sqrt{\kappa}}\right)^2$$

Radial SLE

- path in unit disc **U**, starting at $z = e^{i\theta}$ and conditioned to end at z = 0
- $g_t(z)$ conformally maps $\mathbf{U} \setminus K_t$ to \mathbf{U} , such that $g_t(0) = 0, g'_t(0) > 0$
- radial Loewner equation

$$\frac{dg_t(z)}{dt} = -g_t(z) \frac{g_t(z) + e^{i\theta + ia(t)}}{g_t(z) - e^{i\theta + ia(t)}}$$

- stochastic version: take $a(t) = \sqrt{\kappa}B(t)$.
- g_t takes the growing tip γ_t into $e^{i\theta(t)}$ where $\theta(t) = \theta(0) + \sqrt{\kappa}B(t)$; other points on the boundary are repelled from this point

• infinitesimal transformation:

$$\dot{\theta} = \cot((\theta - \theta(t))/2)$$

$$\dot{\theta}(t) = \eta(t)$$

Multiple radial SLEs

- N nonintersecting paths in unit disc from $\{e^{i\theta_j}\}$ to 0 (assume $\kappa \leq 4$)
- G_t conformally maps $\mathbf{U} \setminus \bigcup_j K_j(t)$ to \mathbf{U}
- generate this by infinitesimally advancing each path in turn:

$$G_{t+dt} \circ G_t^{-1} = g_{dt}^{(N)}(\theta_N(t)) \circ \cdots \circ g_{dt}^{(1)}(\theta_1(t))$$

Then

$$\frac{dG_t(z)}{dt} = -\frac{G_t(z)}{N} \sum_{j=1}^{N} \frac{G_t(z) + e^{i\theta_j(t)}}{G_t(z) - e^{i\theta_j(t)}}$$

where

$$\dot{\theta}_j(t) = \sum_{k \neq j} \cot(\theta_j(t) - \theta_k(t))/2 + \eta_j(t)$$

• this is Dyson's process

Dyson's process and random matrices

$$\dot{\theta}_j(t) = -\frac{\partial V}{\partial \theta_j} + \eta_j(t)$$

with $V = -\sum_{j < k} \ln \sin^2(\theta_j - \theta_k)/2$.

• tends to equilibrium distribution

$$P_{\rm eq}(\theta_1,\ldots,\theta_N) \propto e^{-V/(\kappa/2)} \propto \prod_{i < j} |e^{i\theta_i} - e^{i\theta_j}|^{\beta}$$

with

$$\beta = 4/\kappa$$

- P_{eq} is joint distribution function for eigenvalues of $N \times N$ unitary matrix:
 - $-\beta = 2$ (unitary)
 - $-\beta = 1$ (orthogonal)
 - $-\beta = 4$ (symplectic)
- ullet but note that other values of eta are allowed here

What does this mean?

- suppose there are exactly N curves starting on $r=\epsilon$ and ending on $Re^{i\theta_j}$
- \bullet conformal invariance \Rightarrow

$$\langle \mathcal{O} \rangle_{\{\theta_j\}} = \left\langle \langle \mathcal{O} \rangle_{\{\theta_j(t)\}} \right\rangle_{\{\eta_j(t'); 0 < t' < t\}}$$

 \Rightarrow for $R \gg \epsilon$ the joint distribution of the $\{\theta_j\}$ is given by $P_{\rm eq}$.

Comparison with conformal field theory

• in O(n) conformal field theory the object in question corresponds to a correlation function

$$\langle \underbrace{\phi_{a_1}(e^{i\theta_1})\dots\phi_{a_N}(e^{i\theta_N})}_{\text{boundary operators}} \underbrace{\Phi_{a_1,\dots,a_N}(0)}_{\text{bulk operator}} \rangle$$

with O(n) labels a_i all unequal. In operator language,

$$\underbrace{\langle \theta_1, \dots, \theta_N | (\epsilon/R)^{L_0 + \overline{L}_0} \, \underbrace{|\Phi\rangle}_{\text{highest wt state}}$$

• infinitesimal G_t is

$$z \to z - \delta t \frac{z}{N} \sum_{i} \frac{z + e^{i\theta_j}}{z - e^{i\theta_j}} = z + \delta t (z + \sum_{n>0} a_n z^{n+1})$$

and similarly for \bar{z}

• generator is $G = L_0 + \overline{L}_0 + \Sigma_{n>0}(a_nL_n + a_n^*\overline{L}_n)$

$$G|\text{hws}\rangle = (L_0 + \overline{L}_0)|\text{hws}\rangle = (\Delta + \overline{\Delta})|\text{hws}\rangle$$

 \bullet on the other hand G acting to the left just moves the points around the boundary:

$$\langle \theta_1, \dots, \theta_N | G = \langle \theta'_1, \dots, \theta'_N |$$

- decompose CFT Hilbert space into the finite-dimensional space spanned by the boundary states $|\theta_1, \ldots, \theta_N\rangle$ and its complement
- \bullet in this basis G has form

$$G = \begin{pmatrix} \mathcal{L}^{\dagger} & 0 \\ \star & \star \end{pmatrix}$$

SO

$$G|\text{hws}\rangle = G\left(\frac{|B\rangle}{\star}\right) = \left(\frac{\mathcal{L}^{\dagger}|B\rangle}{\star}\right) = (\Delta + \overline{\Delta})\left(\frac{|B\rangle}{\star}\right)$$

SO

$$\mathcal{L}^{\dagger}|B\rangle = (\Delta + \overline{\Delta})|B\rangle$$

 \Rightarrow eigenvalues of \mathcal{L}^{\dagger} are highest weights of the CFT

What is \mathcal{L} ?

ullet the generator for the Fokker-Planck eqn $\dot{P}=\mathcal{L}P$

$$\mathcal{L} = \sum_{j=1}^{N} \left(\frac{\partial}{\partial \theta_j} \frac{\partial V}{\partial \theta_j} + \frac{\kappa}{2} \frac{\partial^2}{\partial \theta_j^2} \right)$$

- $\mathcal{L}P_{\rm eq} = 0$
- $\mathcal{L}^{\dagger} \neq \mathcal{L}$, but if

$$\mathcal{H} \equiv P_{\mathrm{eq}}^{-1/2} \mathcal{L} P_{\mathrm{eq}}^{1/2}$$

then $\mathcal{H}^{\dagger} = \mathcal{H}$ and $\mathcal{H}P_{\mathrm{eq}}^{1/2} = 0$.

What is \mathcal{H} ?

$$\mathcal{H} = -\frac{\kappa}{2} \sum_{j} \frac{\partial^{2}}{\partial \theta_{j}^{2}} + \frac{2 - \kappa}{2\kappa} \sum_{j < k} \frac{1}{\sin^{2}(\theta_{j} - \theta_{k})/2} - \text{const.}$$

- the Calogero-Sutherland hamiltonian

- ground state of \mathcal{H}_{CS} is $P_{\mathrm{eq}}^{1/2}$
- ullet ground state energy in N-particle sector gives bulk N-leg exponent
- ground state energy with modified boundary conditions gives other bulk exponents (eg one-arm exponent (LSW))
- all the other excited state energies of \mathcal{H}_{CS} give new highest weight exponents of the O(n) CFT

Summary and Some Further Questions

- Dyson's ensemble is realized in 2D critical systems for values of $\beta = 4/\kappa$ other than canonical ones eg $\beta = \frac{4}{3}$ (Ising model) $\beta = \frac{3}{2}$ (self-avoiding walks)
- a connection between the (integrable) C-S hamiltonian and conformal field theory: eigenvalues of \mathcal{H}_{CS} are highest weights of the CFT
- dualities?
- spin C-S generalisations?
- •
- lacktriangle