Self-avoiding Walks,
Branched Polymers,
Confinement,
Supersymmetry
and Dimensional Reduction

John Cardy
Theoretical Physics and All Souls College,
Oxford

- JC, cond-mat/0107223, J. Phys. A 34, L665 (2001).
- C. Richard, A. J. Guttmann and I. Jensen, cond-mt/0107329; J. Phys. A 34, L495 (2001).
- D. Brydges and J. Imbrie, math-phy/0107005.

Outline

- Statistical mechanics problem: self-avoiding loops in the plane, weighted by their area;
- Field theory formulation: supersymmetric Abelian Higgs model;
- Exact RG beta-function;
- Confinement: branched polymers;
- Branched polymers = "Supersymmetric gas";
- Exact beta-function;
- Dimensional reduction \Rightarrow exact result for d = 2;
- Back to self-avoiding loops.

ullet Stat. mech. problem: counting planar polygons on a lattice weighted by perimeter N, and area A:

Generating function

$$G^{(r)}(x,p) = \sum_{N,A} m_{N,A}^{(r)} x^N e^{-pA}$$

p = 2d pressure.

• when p=0, $\sum_A m_{N,A}^{(r)}\sim N^{\alpha-2}\mu^N$, so $G^{(r)}(x,0)\sim (x_c-x)^{1-\alpha}$, with $x_c=\mu^{-1}$, lattice-dependent; α universal.

• $(x, p) = (x_c, 0)$ is a multicritical point: scaling function

$$G_{\text{sing}}^{(r)} = p^{\beta} F((x_c - x)p^{-\gamma})$$

- when p = 0, $G^{(r)} \sim (x_c x)^{1-\alpha} \Rightarrow F(u) \sim u^{\beta/\gamma}$ with $\beta/\gamma = 1 \alpha$;
- $\langle A \rangle \sim \langle R^2 \rangle \sim \langle N \rangle^{2\nu} \sim (x_c x)^{-2\nu} \Rightarrow \gamma = 1/2\nu$.
- expect $F(u) = b_1 \tilde{F}(b_2 u)$ where $\tilde{F}(\cdot)$ is universal.

Exact result:

$$\widetilde{F}(u) = \frac{\operatorname{Ai}'(u)}{\operatorname{Ai}(u)}$$

where

$$\operatorname{Ai}(u) \propto \int_{-\infty}^{\infty} e^{iut + it^3/3} dt$$

Moreover

$$\gamma = \frac{2}{3}, \quad \beta = \frac{1}{3} \quad \Rightarrow \quad \alpha = \frac{1}{2}, \quad \nu = \frac{3}{4}$$

Field theory formulation

• Loops = vacuum diagrams for (complex) scalar field theory

$$S = \int [|\nabla \phi|^2 + m_0^2 |\phi|^2 + \lambda |\phi|^4] d^2r$$

 $m_0^2 - m_{0c}^2 \sim x_c - x$; $\lambda > 0 \leftrightarrow$ self-repulsion.

Cancel unwanted diagrams by introducing scalar fermionic partner: $|\phi|^2 \to \phi^* \phi + \psi^* \psi$. \to Global SUSY.

$$G^{(r)}(x, p = 0) \sim \langle \phi^* \phi \rangle.$$

• couple to area by thinking of this as a Wilson loop: in 2d coupling to a gauge field gives exact area law = linear confining potential.

$$\nabla_{\mu} \longrightarrow \nabla_{\mu} - igA_{\mu}$$

$$S \longrightarrow S + \int F_{\mu\nu}^{2} d^{2}r$$

• SUSY Abelian Higgs model.

•
$$p \leftrightarrow g^2$$

Exact RG flow

• gauge coupling + SUSY \Rightarrow $dp/d\ell = -\beta(p) = 2p \qquad \text{to all orders}$

• Crossover phenomenon

Self – avoiding loops \implies Branched polymers

"quarks" + gauge field ⇒ "hadrons"

+

• Supersymmetric 'hadrons':

$$\Phi \sim \phi^* \phi$$

$$\bar{\chi} \sim \psi^* \phi$$

$$\chi \sim \phi^* \psi$$

$$\omega \sim \psi^* \psi$$

ullet introduce anticommuting coordinates $(ar{ heta}, heta)$ where

$$\int d\bar{\theta} = \int d\theta = 0$$

$$\int d\bar{\theta} d\theta \,\bar{\theta} \theta = -\pi^{-1}$$

and superfield

$$\Psi(r, \bar{\theta}, \theta) \equiv \Phi + \bar{\chi}\theta + \chi\bar{\theta} + \omega\bar{\theta}\theta$$

then

$$S_{\text{eff}} = \int d^2r d\overline{\theta} d\theta [(\nabla_{SS}\Psi)^2 + V(\Psi)]$$

• exhibits SUSY under transformations which keep $|r|^2 + \bar{\theta}\theta$ invariant \Rightarrow dimensional reduction (Parisi-Sourlas, 1982).

+

Exact Dimensional Reduction for Branched Polymers

(Brydges and Imbrie 2001)

• 'sticky ball model' of branched polymers:

$$Z_{BP}(z) = \sum_{T} z^{|T|} \int \prod_{j} d^{d}r_{j} \prod_{|j-k|=1} P((r_{j} - r_{k})^{2})$$

$$\prod_{|j-k|>1} Q((r_{j} - r_{k})^{2})$$

Form of P and Q:

• Theorem (Brydges-Imbrie): if $P(r^2) = Q'(r^2)$ then

$$Z_{BP}(z) = -(1/\pi) \ln Z(-\pi z)$$

where

$$Z(z) = \sum_{N} \frac{z^{N}}{N!} \int \prod_{j} d^{d-2}r_{j} \prod_{jk} Q((r_{j} - r_{k})^{2})$$

is the grand partition function for a repulsive gas in d-2 dimensions, with

$$Q(r^2) = \exp(-\beta V(r^2))$$

Idea of proof: both sides are equivalent to a *supersymmetric* gas

$$Z_{SUSY}(z) = \sum_{N} \frac{z^{N}}{N!} \int \prod_{j} d^{d}r_{j} d\theta_{j} d\overline{\theta}_{j}$$
$$\prod_{j < k} Q(r_{jk}^{2} + \overline{\theta}_{jk}\theta_{jk})$$

where $r_{jk} = r_j - r_k$, etc.

•
$$Q(r_{jk}^2 + \bar{\theta}_{jk}\bar{\theta}_{jk}) = Q(r_{jk}^2) + \bar{\theta}_{jk}\theta_{jk}P(r_{jk}^2)$$

ullet grassmann integrations \Rightarrow all terms with N>0 vanish, so $Z_{SUSY}=1$: consider 1-point function (particle density) where one particle is fixed at 0. Grassmann integrations eliminate all diagrams with closed loops of P's \Rightarrow sum over trees, rooted at 0, with weights exactly as in the 'sticky-ball' model.

ullet Alternatively, let Q=1-G and make the Mayer cluster expansion, in powers of

$$G(r_{jk}^2 + \bar{\theta}_{jk}\theta_{jk}) = \int_0^\infty d\alpha_{jk} \tilde{G}(\alpha_{jk}) e^{-\alpha_{jk}(r_{jk}^2 + \bar{\theta}_{jk}\theta_{jk})}$$

⇒ connected cluster diagrams.

integrals over the co-ordinates have the form

$$\int \prod_{j} d^{d}r_{j} d\bar{\theta}_{j} d\theta_{j} e^{-\sum_{jk} r_{j} M_{jk} r_{k}} e^{-\sum_{jk} \bar{\theta}_{j} M_{jk} \theta_{k}}$$

$$= (-1)^{N} (\det M)^{-d/2} (\det M)$$

$$= (-1)^{N} (\det M)^{-(d-2)/2}$$

- the cluster expansion for a non-SUSY gas in d-2 dimensions, with fugacity -z.

• in particular, for d-2=0,

$$Z(-z) = \sum_{N} \frac{(-z)^{N}}{N!} e^{-\frac{1}{2}V(0)N(N-1)}$$

$$= \sum_{N} \frac{(-z')^{N}}{N!} \int e^{-\frac{1}{2}V(0)} t^{2} + iNt dt$$

$$= \int e^{-(\frac{1}{2}t^{2} + \tilde{z}e^{it})/V(0)} dt$$

where $\tilde{z} = zV(0)e^{V(0)/2}$.

- this is an entire function of \tilde{z} , so the only singularities of $Z_{2dBP}(z) \sim \ln Z(-z)$ are at the zeroes of $Z \Rightarrow \alpha_{BP} = 2$ in d = 2.
- but there is another interesting limit: consider $V(0) \rightarrow 0$: expand about critical point it = 1, $\tilde{z} = \tilde{z}_c = e^{-1}$:

$$Z(-z) \sim \int e^{(i(\tilde{z}_c - \tilde{z})t + it^3/3)/V(0)} dt$$

– an Airy integral!!

• Exact RG equation:

$$P = Q'(r^2) \sim (1 - e^{-V(0)})\delta(r^2 - a^2)$$

so under rescaling $a \to ae^{\ell}$ in d dimensions, $(1 - e^{-V(0)}) \to (1 - e^{-V(0)}) e^{2\ell}$.

So

$$dp/d\ell = 2p$$

 $dV(0)/d\ell = 2V(0)$ as $V(0) \rightarrow 0$

⇒ conjecture the correspondence

$$V(0) \propto p$$
 as $p o 0$ $ilde{z}_c - ilde{z} \propto x_c - x$

$$G^{(r)}(x,p) \sim \frac{\int te^{(i(x_c-x)t+it^3/3)/p} dt}{\int e^{(i(x_c-x)t+it/3)/p} dt}$$

Rescale $t \to p^{1/3}t$:

$$G^{(r)}(x,p) \sim p^{1/3} F((x_c - x)p^{-2/3})$$

$$\Rightarrow \alpha = \frac{1}{2}$$
, $\nu = \frac{3}{4}$, and $F(u) \propto \text{Ai}'(u)/\text{Ai}(u)$.

 Richard, Guttmann and Jensen confirmed Airy form by numerical estimates of moment ratios

$$\langle A^n \rangle / \langle A \rangle^n$$

where

$$\langle A^n \rangle \sim (\partial/\partial p)^n G^{(r)}(x,p)|_{p=0}$$

• Airy function function first conjectured by RGJ on basis of assumed q-algebraic equation satisfied by $G^{(r)}(x, p)$.

Comments and Puzzles

- first example of a scaling function of two thermodynamic variables near a non-trivial isotropic critical point;
- gives a new explanation of why $\nu_{SAW} = \frac{3}{4}$ in d=2: can we make it rigorous?
- can generalise $t^3 \to t^{k+2}$: for $p \to 0$ these lead to new 2d multicritical points [physical interpretation as yet obscure, but scaling dimensions agree with twisted N=2 supersymmetric CFTs.]
- a valuable lesson in the unity of theoretical physics!