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Outline

Statistical mechanics problem: self-avoiding
loops in the plane, weighted by their area;

Field theory formulation: supersymmetric
Abelian Higgs model;

Exact RG beta-function;

Confinement: branched polymers;

Branched polymers = “Supersymmetric

das ,

Exact beta-function;

Dimensional reduction = exact result for
d=2;:

Back to self-avoiding loops.



e Stat. mech. problem: counting planar poly-

gons on a lattice weighted by perimeter N,
and area A:

Generating function
G(T)(a:,p) = > m%)A g ePA
NA
p = 2d pressure.

e when p = 0, ZAm%,)A ~ Ne=2;,N g0

G (x,0) ~ (ze—2)1~%, with z. = p~1, lattice-
dependent; o« universal.



e (x,p) = (x¢,0) is a multicritical point: scal-
ing function

G§Yy = 1P F((ze — 2)p™7)

sing

e when p =0, G ~ (¢ —2)17% = F(u) ~
w7 with B/y =1 — «;

o (A) ~ (R2) ~ (N)Z ~ (2o — )2 = o =
1/2v.

o expect F(u) = b1 F(bou) where F(-) is uni-
versal.



where

Exact result:




Field theory formulation

e Loops = vacuum diagrams for (complex)
scalar field theory

s = [Vl + mBls + Agl*1d>

m3 — m3. ~ zc—x; A > 0 « self-repulsion.

+ +

Cancel unwanted diagrams by introducing scalar
fermionic partner: |¢|? — ¢*p+1*y. — Global
SUSY.

G (z,p = 0) ~ ($*¢).

e couple to area by thinking of this as a Wil-
son loop: in 2d coupling to a gauge field gives
exact area law = linear confining potential.
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e SUSY Abelian Higgs model.
o p < g?
Exact RG flow

e gauge coupling + SUSY =

dp/dl = —p(p) = 2p to all orders

e Crossover phenomenon

Self — avoiding loops — Branched polymers

N

“quarks” 4+ gauge field = “hadrons”
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e Supersymmetric ‘hadrons’:

¢ P
~ TP
¢ P
~ TP

©
%

& < X
e

e introduce anticommuting coordinates (4, 6)

where
/d@‘ - /d@ =0
/dH_dH g9 = —n 1
and superfield
W(r,0,0) =d + x0 + x0 + whb

then

Sett = [ d3ddd](V55W)2 + V(W)

e exhibits SUSY under transformations which
keep |r|? 4+ 66 invariant = dimensional reduc-
tion (Parisi-Sourlas, 1982).
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Exact Dimensional Reduction for
Branched Polymers
(Brydges and Imbrie 2001)

e ‘sticky ball model’ of branched polymers:

Zpp(z) = ZZ|T|/Hdd7°j I[I P(r;—ri)?)
T J

j—kl=1

I Q(r; —r)?)

l7—k|>1



Form of P and Q:

P
— ¢

e Theorem (Brydges-Imbrie): if P(r2) = Q'(r2)
then

Q

Zpp(z) = —(1/m)In Z(—mz2)

where
2 d—2 2
z<z>=%ﬁ/1;[d 11 =)

IS the grand partition function for a repulsive
gas in d-2 dimensions, with

Q(r?) = exp (— BV (r?))



Idea of proof: both sides are

equivalent to a supersymmetric gas

N
Z —
ZSUSY(Z) p— g —N|/||dd7“]d9]d(9]
N : 7

11 Q(sz-k + 6,10,1)
i<k
where r;. = r; —rp, etc.

. Q("“jz-k +6,10;1) = Q(?“jz-k) + gijjkP(sz-k)

e grassmann integrations = all terms with
N > 0 vanish, so Zgygy = 1: consider 1-
point function (particle density) where one
particle is fixed at 0. Grassmann integra-
tions eliminate all diagrams with closed loops
of P's = sum over trees, rooted at 0, with
weights exactly as in the ‘sticky-ball” model.



T T

e Alternatively, let Q) = 1 — G and make the
Mayer cluster expansion, in powers of

_ o0 ~ i (r2 0.0
G(r5,+0;10,1) :/o do;,G (o) e k(5 +05k03k)

= connected cluster diagrams.

G G

G

e integrals over the co-ordinates have the form

/ H ddfrjdgjde e 2k T Mk e 2k 05 M 100
J

(—1)N (det M)~ %2 (det M)
(—1)N(det M)~ (d=2)/2

- the cluster expansion for a non-SUSY gas
in d — 2 dimensions, with fugacity —z.
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e in particular, for d —2 = 0,

(—2)N S~ SV(0)N(N-1)
N

Z(—z) = Z
N
%: (—Z’)N/e—%tQHNt

dt
N!

— / o— (312 +2eh)/V(0) 4
where z = 2V (0)eV(0)/2,

e this is an entire function of z, so the only
singularities of Z5,5p(2) ~ In Z(—z) are at the
zeroes of Z = agp =2 1in d = 2.

e but there is another interesting limit: con-

sider V(0) — 0: expand about critical point
1

=1 z2=2.=e€e "

Z(—2) ~ / o(1(Ze=2)t41t3/3) [V (0) 44

— an Airy integral!!
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e Exact RG equation:

P=0Q'(r?) ~ (1 — e V)52 — 4?)
so under rescaling a — ael in d dimensions,
(1 — e V0)) 5 (1 — e V(0)) 2t
So

dp/d¢
dV(0)/d¢

2p
2V (0) as V(0) =0

= conjecture the correspondence

V(0) x p as p— 0

Ze— 2 X Xe— X

f te(i(a:c—a:)t+it3/3)/p dt

G(’I") ~Y
(z,p) [ elilwe—a)t+it/3) /p g

Rescale t — pl/3¢:

G (z,p) ~ p/3F ((zc — 2)p~2/3)

, v=232, and F(u) < Ai'(u)/Ai(u).
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e Richard, Guttmann and Jensen confirmed
Airy form by numerical estimates of moment
ratios

(A") /(A"

where

(A™) ~ (8/0p)" G\ (&, p)|p=0

e Airy function function first conjectured by
RGJ on basis of assumed g-algebraic equation
satisfied by G(")(z, p).



Comments and Puzzles

first example of a scaling function of two
thermodynamic variables near a non-trivial
iIsotropic critical point;

gives a new explanation of why vgay = 3
in d = 2: can we make it rigorous?

can generalise t3 — t¥+2: for p — 0 these
lead to new 2d multicritical points [physi-
cal interpretation as yet obscure, but scal-
ing dimensions agree with twisted N = 2
supersymmetric CFTs.]

a valuable lesson in the unity of theoreti-
cal physics!
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