THE STRESS TENSOR IN QUENCHED
RANDOM SYSTEMS

John Cardy
Theoretical Physics & All Souls College, Oxford

Outline.

1. The stress tensor in random systems considered as
deformed pure systems.

(N)

. Correlators of the stress tensor at a random fixed
point: expectations from the replica approach.

3. Partition function on a torus.

4. How the stress tensor enters into correlation func-
tions: subtleties with Kac operators.

e Many results generalise to arbitrary dimension, but
take d = 2 for simplicity.

e Some of this material in JC, cond-mat/9911024. Some
overlap with Gurarie and Ludwig, cond-mat /9911392,
but differences in detail.



Quenched random systems as a deformed pure
system.

S — Sp+ _%1 [ hy(r) s ()

e Sp is a non-random CFT; ®;(r) a set of primary
fields (assumed to be scalars — can generalise to vec-
tor couplings).

e h;(r) quenched random variables, h;(r) = 0,
hi(r")hi(r") = Xijo(r' —r") — take N =1 for sim-
plicity.

e interested in RG flow: Sp =>(random fixed point).

e the perturbation is not necessarily small: idea is to
see how objects in Sp deform in the full theory. One
of the tools will be replica group theory (cf. atomic

physics).



Recall deformed CFT in pure systems (Zamolod-
chikov, 1986).

S =Sy —\[D(r)dr
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e this assumes that no additional renormalization 1m-
posed (unnecessary if zg < d), but in general



Now do this for random coupling A — h(z, 2):
O:T = [d*%'§ |z—z|2—a2)(z—z’)h(z' Z)

A 1 —
(2, z (3’ P
(Z_Zl)2 <Z7 Z>_|_ (Z_Z> (Z Z)
but now h(z', Z') is white noise. Result:
(%T —|’ (926 — K

where

O(z,2) = —7T<l — Ag)h(z,2)P(z, 2)
o (d — § — 24)h @]
K = i7(hd,® — ®9,h)

e T and © are the components of the stress tensor for a
given realization of randomness, not the quenched
average!

o % comes from the white noise nature of h(r).

e Oh interpreted by integrating by parts in correlators

e similar equation relating T to the same O: so T.: =
T:., o< O, even in the random system: local rota-
tional symmetry is preserved [results slightly modi-
fied if the coupling is to a random vector]|.



Replica formulation.

7n = /phe—(l/QA)thderr o= Za Spatl h S0 Dad’r

= Tr /Dh€_<1/2>\)f(h_zaq)a)deTe_ZaSP,a+%/\fZa7gbq)aq)bd2r
which has the form of a translationally invariant per-
turbed CFT.

Replica theory has a stress tensor 7 which is a defor-
mation of £, T;, so

where ¥ = —%)ﬁT(l — 2A) Tozp O Dy
At the new fixed point, ¥ = 0, and

(T()T(0)) = c(n)/22"
where, by the c-theorem sum rule,

c(n) — nep = —(12/7) [ r*(9(r)9(0)).d7r



Interpretation:

<TT> <T Tb> — 7?,<T1T1> + n(n — 1)<T1T2>

(T — TT0TY)

so that, at the random fixed point

(TT). = cet/22"

where c.f = (0), and

Ocep = —3mA(1 —2A)2 lim (1/n)

T 2 @) Bi{r) 2 O0)Ra(0))
= —127(1 — 2A)* [ r*h(r)h(0){®(r)D(0)).d
= 1()7T<;rga2A /7”12]'& (] h( )<(D<7"1>(D<7”2>>Cd27"1d27"2

NB no obvious positivity: expect h® > 0 but above
involves h(® — (P)).



But there n — 1 other independent components of the
deformed stress tensor:

T =1,

T. = T,— (1/n)T
where =, 7, = 0.

e Combinations are chosen to transform according to
irreps of S5, - should deform into conformal fields at
the new fixed point, with scaling dimensions
(24 6(n),0(n)) (can check in perturbation theory

that 0 #0.)

In the undeformed theory.
o 1y c
T = (=) o
T.Th) " n) 22
so choose, at the new fixed point.

(7o) = (0= ) s

n

(I)N(T) = lim(TiT5)
= i (71 + (1/n)T)(T2 + (1/n) 7))

Tl (U N P T S
= (_n<zz> +n)

= ;ji In(2%)

where

ot = 2¢/(0)8'(0)
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7. is not conserved: in fact
O:T, + 0.9, = K,
where
¥, = —mA(3 — A)D, > D,
K, = 7\ b;@ (0,0.D, — ©,0.D,)
e This is equivalent to the previous equation for a fixed

h(r) by the substitution A s, &, — h(r).

e from this can derive a sum rule for 0c¢.g in terms of
suitably averaged correlators of ® (but no positiv-

ity).
e in a general renormalization scheme
- 1

. = —5m(B) + () 3 (8,80) — (1/n)d

so that 9, = O(n) at the random fixed point.



The torus partition function.

Torus partition function encodes operator content -
T, T, etc. For general n,

25 — (qgy o
(1 4 q2 4 <n . 1>q2+5(n)q5(n) 4 q—2_|_
(n . 1)q5(n)q2—|—5(n) + q2q2 4. )

e This should equal 1 when n = 0, so there must be
enormous cancellations!

e Massive degeneracy of Virasoro primaries as n — 0
- extended algebra (supersymmetry???)

e quenched free energy In Z = (9/0n)|,=0 2"

= —crIn(qq) — 8'(0)(q" + ") In(gq) + - -
e where §'(0) = Cefr/2Cest-
Questions:

e how does modular invariance work?

e boundary states?



Operator product expansions.

The “c — 0 catastrophe”: for primary ¢ in any CE'T

$(2,2)  ¢(0,0) = )
ag 2A 1IAA

) _
ERN=TY 1+72T+---+ 3 22z25(TT) + -

so, in the 4-point function
(pdd0) oc ag(1+(28/c)*(¢/2)n"+ - +O(1/c')e (i) + )
- a problem as ¢ — (. Three possible resolutions:
1. other operators in - - - cancel the divergence;
2.a5 —> 0asc—0;
3. (A, A) — (0,0) as ¢ — 0.
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Replica models.
Let ® =5, ®,, &, = ®, — (1/n)®. In the pure theory,
the OPLEs are schematically

L 2A
O, D, = (1—1/n)(22)" 4A(1—|—ZQT—|-ZQT—|— )
c
—4A 2 20% o
d-d =n 1+—ZT+ (22)°TT+
(en)
207
which deform into
D, D, = (1 —1/n)(zz)"*% (1+2A522T+
a a C(n)
+constz?(22)°(n) T, + - - )
2A 203 _
B0 = nlaz) e (14 2 BAT 4 2 (T
c(n) c(n)?

+const(22)2F2MIAM 4 - )

where M is a new primary operator with dimensions
(2+62(n), 2+62(n)). Thus ® and ® resolve the “c — 0
catastrophe” differently. 4-point functions have form
(PP, D, DP,) ~ 148 (0)n*In(nn) +

(PDDP) ~ (147" + -+ 65(0)(n7)” In(ng) + - - )
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NB &, = &, + (1/n)® and ® are an example of a
logarithmic pair: at ¢ =0

(Do(2, 2)D,(0,0)) ~ (22)7*In(22)
(D2, 2)P(0,0)) ~ (22)72
(®(z, 2)P(0,0)) =0

e Kac operators are examples of the second solu-
tion.

e Def.: a Kac operator ¢ has scaling dimensions at
some fixed position in the Kac table for a range of
¢ including 0.

e Only other Kac operators can appear in the OPE
¢ - ¢: this excludes a companion of 7, which would
have dimension (2 + 6, 6). Hence a, = 0 as ¢ — 0.
But M with dimensions (2 4 d2, 2 4 d2) does exist!

e if we choose a4 o< ¢, the 2N-point connected cor-

relator goes like ¢MP~U+1 g0 it is natural to take

p=1.
e this is exactly what happens in physical examples of
percolation ((Q — 1)-Potts model) or self-avoiding

walks (O(n — 0) model), where physical quantities
are derivatives wrt c of correlators of Kac operators.



Summary

e Stress tensor in a general quenched random system.
with a given distribution of impurities, satisfies

with explicit expressions for © and K.

e at a random fixed point,

(TT), = ceg/22"

(TT) = (Ger/22") In(22)

e sum rules for the change in c.g and c.q along a RG
trajectory betwen 2 fixed points. in terms of physi-
cally measurable correlators.

e massive degeneracy of operators at ¢ = 0 — extended
symmmetry (777) — but the candidates 7 for gen-
erators are not holomorphic fields!

e some operators solve the “c — 0 catastrophe” by
having connected correlators which are all O(c) —
this is true of all Kac operators — but the physics
is in the O(c) term and is therefore invisible in the
theory at ¢ = 0.
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