Conformal Multifractality

John Cardy

Theoretical Physics and All Souls College, Oxford

- M. E. Cates and T. Witten, *Phys. Rev. Lett.* **56**, 2497, 1986; Phys. Rev. B 35, 1809, 1987.
- G. F. Lawler and W. Werner, to be published.
- B. Duplantier, *Phys. Rev. Lett.* **81**, 5489, 1998; cond-mat/9908314 and references therein.
- JC, J. Phys. A 32, L177, 1999; cond-mat/9812416

Harmonic measure of a fractal curve γ .

 $\nabla^2 \phi = 0$ outside γ , $\phi = 0$ on γ , $\partial \phi / \partial r \sim (1/2\pi r)$ as $r \to \infty$. What version: $\Phi(x) = a^{-1} \sum_{|r-x|=a} \phi(r)$.] is distribution of the flux $\Phi(x)$ onto a point x of γ ? [Discretised

 $\Phi(x)$. Brownian particle starts at ∞ . $Pr(\text{particle first hits } \gamma \text{ at } x) =$

$$\sum_{x} \Phi(x)^{n} / \sum_{x} 1 \sim (a/R)^{\lambda_{n}}$$

 $(R = \text{linear dimension of } \gamma.)$

$$\lambda_0 = 0$$

 $\lambda_1 = D = \text{ fractal dimension}$

Multiscaling: $\lambda_n \neq n \cdot \lambda_1$.

V

More general setting: CFT with a fractal boundary

Harmonic problem: $\phi(r_1) = \int \left[\mathcal{D}\phi \right] \phi(r_1) e^{-\frac{1}{2} \int (\nabla \phi)^2 d^2r}$

on γ , with ϕ some conformal field, and ask for More generally, we have a CFT outside γ with a boundary condition

$$\overline{\langle \phi(r)\phi(R')\rangle^n} \sim a^{-nx}R'^{-nx}(a/R')^{\lambda_n}$$

where $|r - \gamma| = a$ and $R' \sim R$.

 \widetilde{x} are the bulk and boundary scaling dimensions of ϕ . NB near a flat boundary in general we get $a^{-x}R^{-x}(a/R)^{\widetilde{x}}$ and x and

In a wedge of opening angle θ , $\tilde{x} \to \pi \tilde{x}/\theta$. Fractal: distribution of θ s?

ω

Basic assumption: conformal invariance of measure in

limit for self-avoiding walks, boundary of percolation clusters, etc. valid for the frontier of a Brownian walk, assumed true in continuum

interior of rectangle $\pi \times \ell_{eff}(\gamma, \ell \equiv ln(R/a))$. (see Figure). Basic idea of calculation: conformally map region exterior to γ into

If γ were flat,

$$\langle \phi(r')\phi(R')\rangle_{\rm rectangle} \sim e^{-\tilde{x}\ell}$$

In general,

$$\langle \phi(r')\phi(R')\rangle_{\text{rectangle}} \sim e^{-\tilde{x}\ell_{\text{eff}}(\gamma,\ell)}$$

Take nth power and average over γ :

$$e^{-\lambda_n \ell} \sim \overline{e^{-n\tilde{x}\ell_{\mathsf{eff}}(\gamma,\ell)}}$$

+

4

How to calculate averages of the form $e^{-p\ell_{\rm eff}}$?

sum over all such walks from r_1 to r_2 M-leg operator for M mutually avoiding SAWs (Fig. 2). Weighted Remark: this is independent of choice of ϕ . Choose $\phi=\phi_M$, the

$$= \langle \phi_M(r_1)\phi_M(r_2)\rangle_{\text{bulk}} \sim |r_1 - r_2|^{-2x_M}$$

(with a corresponding boundary exponent \tilde{x}_M .)

of linear size $R \sim \text{sum}$ over M+2 walks from r to R. So ullet sum over M SAWs, from r near γ to R, followed by sum over all γ

$$e^{-(x_M+2-x_2)\ell} \sim e^{-\tilde{x}_M\ell_{\mathsf{eff}}(\gamma,\ell)}$$

Recall $e^{-\lambda_n \ell} \sim e^{-n\tilde{x}\ell_{\rm eff}(\gamma,\ell)}$

Choose M such that $\tilde{x}_M = n\tilde{x}$. Then $\lambda_n = x_{M+2} - x_2$.

ഗ

+

What are x_M and \tilde{x}_M ?

$$\langle \phi_M(0)\phi_M(\ell)\rangle$$
 rectangle $\sim e^{-\tilde{x}_M\ell}$; $\langle \phi_M(0)\phi_M(\ell)\rangle$ cylinder $\sim e^{-x_M\ell}$

using Bethe ansatz (Yung & Batchelor, 1995). Agrees with less rigorous Coulomb gas methods Obtain from eigenvalues of transfer matrix of lattice problem $Na imes N\ell a$

$$x_M = \frac{3}{16}M^2 - \frac{1}{12}$$

$$\tilde{x}_M = \frac{1}{8}M(3M+2)$$

Final result:

$$\lambda_n = \frac{1}{48}(\sqrt{1+24n\tilde{x}}+11)(\sqrt{1+24n\tilde{x}}-1)$$

0

$f(\alpha)$ interpretation

Distribution of boundary exponents:

$$e^{-\lambda_n \ell} \sim \int e^{f(\alpha)\ell} e^{-n\alpha\ell} d\alpha$$

where $\ell = \ln(R/a) \gg 1$. Steepest descents: Legendre transform

$$f'(\alpha) = n;$$
 $\lambda_n = n \cdot \alpha - f(\alpha);$ $\partial \lambda_n / \partial n = \alpha$
$$f(\alpha) = -\frac{1}{12} \frac{(\alpha - 3)^2}{(2\alpha - 1)};$$
 $(\tilde{x} = 1)$

as $\alpha \to \infty$: moments diverge for $n \le -\frac{1}{24}$. Singularity at $lpha=rac{1}{2}$: maximum opening angle $heta=2\pi$; $f(lpha)\sim -lpha/24$

_

Distribution of opening angles.

Recall exponent for a wedge of opening angle θ is $\pi \tilde{x}/\theta$. So

$$P(\theta) \sim e^{f(\pi \tilde{x}/\theta)\ell} \sim \exp\left(-rac{\ell}{24} \left(\sqrt{(\pi/\theta) - (1/2)} - rac{5}{2\sqrt{(\pi/\theta) - (1/2)}}
ight)^2\right)$$

 $\pi/3$. In the limit all angles are 60° (if measured this way)! Remark: as $\ell \to \infty$, $P(\theta)$ strongly peaked around *typical* value $\theta =$

 ∞

Generalisations and remarks.

- Same result for $\gamma =$ frontier of a Brownian walk, (accessible) hull of a percolation cluster (bridging fjords), ... These all have $D=\frac{4}{3}$.
- 0, e.g. boundary of Ising model clusters. Same argument but boundaries. x_M , \tilde{x}_M depend on c. Result use as a test operator $\phi_M=M$ -leg operator for M Ising cluster Case where γ is generated by a CFT with central charge $c \neq$

$$P(\theta, c) = P(\theta, 0)e^{-cg(\theta)\ell}e^{-cg(2\pi - \theta)\ell}$$

where $cg(\theta)\ell$ is contribution to $\ln Z$ from a wedge of angle $\theta.$

Similar result for coupling to quenched random bulk metric:

$$\lambda_n^{\mathrm{bulk}} = \frac{1}{2} \left(\sqrt{1 + 12nx} - 1 \right)$$

တ

Conclusions

of the multifractal f(lpha) hypothesis. Results (almost) rigorous for fractal boundaries in d=2. Analytic results confirm general form Brownian walks, less so for other problems. Many open challenges! Exact results for multiscaling exponents at 'conformally' invariant