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Harmonic measure of a fractal curve ~.

e V2¢ = 0 outside v, ¢ = 0 on ~, 9¢/0r ~ (1/2xr) as r — co. What
is distribution of the flux ®(x) onto a point z of 4?7 [Discretised

version: d(z) =a 1 > |r—z|=a o(r).]

e Brownian particle starts at oo. Pr(particle first hits v at z) =
d(x).

d o@D 1~ (a/R)M (R = linear dimension of ~.)

A =20 A1 = D = fractal dimension
Multiscaling: An = n - Aq.
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More general setting: CFT with a fractal boundary

Harmonic problem : p(ry) = \\G&@?vawidém%‘,

More generally, we have a CFT outside v with a boundary condition
on v, with ¢ some conformal field, and ask for

(S(r)P(R))" ~ a™ ™R ™" (a/R )

where |r —v| =a and R' ~ R.

NB near a flat boundary in general we get @|am|a€\mvm and z and
x are the bulk and boundary scaling dimensions of ¢.

In a wedge of opening angle 0, x — wx /0. Fractal. distribution of 6s7



Basic assumption: conformal invariance of measure in — -

— valid for the frontier of a Brownian walk, assumed true in continuum
limit for self-avoiding walks, boundary of percolation clusters, etc.

Basic idea of calculation: conformally map region exterior to ~ into
interior of rectangle © X lesr(v, £ =In(R/a)). (see Figure).

If v were flat,
A%Aiv%Am\vVBnS:@_m ~ e

In general,

(p(r)d(R))recta ngle ™~ e Blefr(7:4)

Take nth power and average over .




How to calculate averages of the form e—Pleff?

Remark: this is independent of choice of ¢. Choose ¢ = ¢4, the
M-leg operator for M mutually avoiding SAWSs (Fig. 2). Weighted
sum over all such walks from r1 to ro

= (dpr(r1)dp (r2))buik ~ |r1 — ra| %M

(with a corresponding boundary exponent Z,;.)

e sum over M SAWSsS, from r near v to R, followed by sum over all ~
of linear size R ~ sum over M + 2 walks from r to R. So

e~ (@pyo—x2)l , o—Tprlefr (L)

Recall e~ Mt ~ e—n&lefr(7,£)

e Choose M such that z); =nxz. Then Ap =zp740 — 2.
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What are x,, and z,,7

(Pr1(0)Pnr(£))rectangle ~ e~ mt, (Dar(0)Dar(€)) cylinder ~ e~ Tt

Obtain from eigenvalues of transfer matrix of lattice problem Nax N¥{a
using Bethe ansatz (Yung & Batchelor, 1995). Agrees with less
rigorous Coulomb gas methods.

zy = s M? — 15 Fy = 5M(3M + 2)

Final result:

An = 75(V1+ 24nZ + 11)(v/1 + 24nZ — 1)




f(a) interpretation

Distribution of boundary exponents:
el \mioi c—nal g

where £ = In(R/a) > 1. Steepest descents: Legendre transform

f'(a) =n; An =n-a— f(a); O\n/On = a
__1(a-3)* - _
o) =-HGacy E=Y

Singularity at & = 4: maximum opening angle § = 27; f(a) ~ —a/24

as a — oo: moments diverge for n < —5y.



Distribution of opening angles.

Recall exponent for a wedge of opening angle 0 is nx /0. So
2

5
2,/(/6) — (1/2)

P(9) ~ S (TZ/OL _ exp | - /\?\3 —(1/2) —

Remark: as ¢ — oo, P(6) strongly peaked around typical value 8 =
w/3. In the limit all angles are 60° (if measured this way)!



Generalisations and remarks.

Same result for v = frontier of a Brownian walk, (accessible)
hull of a percolation cluster (bridging fjords), ... These all have

__ 4
U|M.

Case where ~ is generated by a CFT with central charge ¢ #
0, e.g. boundary of Ising model clusters. Same argument but
use as a test operator ¢, = M-leg operator for M Ising cluster
boundaries. xjs, )7 depend on c. Result

P(6,c) = P(6, ovmémgxmé&mTSN
where cg(0)¢ is contribution to InZ from a wedge of angle 6.

Similar result for coupling to quenched random bulk metric:

A =3 (vi+12nz — 1)




Conclusions

Exact results for multiscaling exponents at ‘conformally’ invariant
fractal boundaries in d = 2. Analytic results confirm general form
of the multifractal f(a) hypothesis. Results (almost) rigorous for
Brownian walks, less so for other problems. Many open challenges!
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