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Outline.

e Crossing clusters and Potts model partition func-
tions.

e Conformal field theory predictions: differential equa-
tions.

e Conformal field theory predictions: Coulomb gas
methods.
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Percolation and the Potts model

‘Spins” s(r) = 1,2,...,a,...,Q at vertices of the lat-
tice.

Partition function
Z — Tl“ ejzr,r/ 55(7“),5(7“/)

o Ir H/ (1 —p) —|-p(55(r)75(74/)] where p=1—¢e~

r,r

— Z pnopen ( 1 _ p) N¢losed Q Nclusters <*)

cluster configs

J

@ = 1 & percolation, but (*) can be continued to
arbitrary ).



a

Boundary conditions: Potts spins free (f), or fized
into a given state (a): clusters which touch such a
boundary are counted with weight 1 rather than Q).
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e In both cases, we need to consider partition func-
tions for which the boundary conditions are different
on different parts of the boundary. Think of these as
insertions of boundary condition-changing operators
in the ensemble with free boundary conditions.

b.g.
Zab — <¢f|a<1>¢a|f<2>¢f|b(3>¢b|f<4)> <*>

These behave just like ordinary correlation functions

of local events.



Conformal field theory

e assumes the existence of the continuum limit of cor-
relation functions of d7"¢¢(r) as lattice spacing

o — 0.

e asserts that this limit is conformally covariant:
¢(z) — |d2'/dz]"*¢(2") under a conformal map-
ping z — z'. [Note: :1:¢f|a(Q = 1) = 0, so that
percolation partition functions and therefore cross-
ing probabilities are conformally invariant.]

e if, under the conformal mapping which maps interior
of the region into the unit disc, (Cy,...,Cy) are
mapped into (21, ..., 24), then (*) depends only on
the cross-ratio n = 219234/ 213204

e such correlation functions often satisfy linear PDEs,
and for () = 2, 3 these are known to be second order
(hypergeometric) equations. [Comes from consider-
ing effect of the infinitesimal transformation

=Y =z24e(z— )t (1)

on the correlation function {(¢(z1)P(22)P(z3)P(24)).
and assuming that d¢(21) o< €(0/021)*¢(z1).]



Results
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where the constants are fixed by Z,, ~ Z,4 — 1 as
n — 0, and x = z(Q).

So:

(%) !

Pr(N.>0) = 1— 3 (1—n)3:F(3,5:5:1 — 1)
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and

EIN.] = (0/0Q)|g=1(Z11 Zual ZtaZuy)
= (0/9Q)g=1(1 = n) "D (1 + 222(Q))
X9 F1(—42(Q), 531 — 1)

which reduces to

2'(1) -2l —n) +42 —4 %



e 1/3 comes from the fact that at each regular singu-
lar point the indices are (0, ), and the sum of the
indices = 1.

e /(1) = +/3/87 may be found from E[N,] ~ Pr(N, >
1) asp — 0.

o for a L x W rectangle with . > W, E[N. ~
22" (1)(L/W).

e partial results on the full probability distribution of
N..
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Coulomb gas methods

e work best for bulk quantities, e.g: how many clusters
separate two points P, and P, of the plane
(= 2% number of hulls)?

e Randomly assign an orientation to each loop, so each
carries a total current +1. Current density = J,(r).

e define height function A(2) — A1) = /?JMdS“7
so J, = €,,0"h.
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e define height function h(2) — h(l) = /?JﬂdS“,
so J, = €,,0"h.

e In the continuum limit, A(x) is conjectured to have
a gaussian distribution

Pr({h}) oc exp ( — (k/2m) [(OR)*d7r).
Various methods then fix & = 1/(2v/37).

e [/lnumber of hulls threading P, P;|
= E[(h(2) — h(1))?*] ~ kIn|P, — P

e conformally map to a cylinder: mean number of
clusters wrapping round cylinder per unit length

= 1/(2V/3),
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