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Quantum Entanglement (Bipartite, Pure State)

» quantum system in a pure state |W), density matrix
p=|V){V|
» H=Has® Hp

» Alice can make unitary transformations and measurements
only in A, Bob only in the complement B

» in general Alice’s measurements are entangled with those
of Bob

» example: two spin—% degrees of freedom

) = cosf| T)al )5 +sind| {)al 1)s



Measuring bipartite entanglement in pure states

» Schmidt decomposition:

W)= Gla®vj)e
J
with ¢; > 0, Y-, ¢Z = 1, and |¢;) 4, 1)) 5 orthonormal.

» one quantifier of the amount of entanglement is the entropy

Sa=-)_lglloglgl? = Sg
J

» if ey =1, rest zero, S =0 and |V) is unentangled

» if all ¢; equal, S ~ log min(dim# 4, dim# 5) — maximal
entanglement



» equivalently, in terms of Alice’s reduced density matrix:
pa=Trg [W)(V|

Sy=—Trapalogps = Si von Neumann entropy

» similar information is contained in the Rényi entropies

Sy =(1=n)""logTrs pa”

» Sy =limpy_; SA(n)



other measures of entanglement exist, but entropy has
several nice properties: additivity, convexity, . ..

it is monotonic under Local Operations and Classical
Communication (LOCC)

it gives the amount of classical information required to
specify pa (important for numerical computations)

it gives a basis-independent way of identifying and
characterising quantum phase transitions

in a relativistic QF T the entanglement in the vacuum

encodes all the data of the theory (spectrum, anomalous
dimensions, ...)



Entanglement entropy in QFT

In this talk we consider the case when:

>

the degrees of freedom are those of a local relativistic QF T
in large region R in RY

the whole system is in the vacuum state |0)

Ais the set of degrees of freedom in some large (compact)
subset of R, so we can decompose the Hilbert space as

H=Has®@Hs

in fact this makes sense only in a cut-off QFT (e.g. a
lattice), and some of the results will in fact be cut-off
dependent

How does S, depend on the size and geometry of A
and the universal data of the QFT?



Rényi entropies from the path integral (d = 1)
A B

0

— 00 P,

» wave functional ¥({a}, {b}) «x conditioned path integral in
imaginary time fromr = —ocoto 7 = 0:

w({a}. (b)) = 22 / (da(r)][db(r)] e~ (1 /MSHAE]
a(0)=a,b(0)=b

where S = [°_L(a(r), b(r))dr

» similarly W*({a}, {b}) is given by the path integral from
7=010 400



pa(ay, a) = / dbW(ay, b)W* (a2, b)

» this is given by the path integral over R? cut open along
An{r = 0}, divided by Z;:




Rényi entropies: example n = 2
palar, as) = /db\ll(a1,b)\ll*(a2,b)

Tl‘Ap%:/da1d82db1db2 V(ay, b))V (az, b1)V(az, b2)V* (a1, ba)

Trapa® = Z(Re)/ 27

where Z(R») is the euclidean path integral (partition function)
on an 2-sheeted conifold R,



» in general
TrA pAn == Z(Rn)/Z1n

where the half-spaces are connected as
A
to form R .

» conical singularity of opening angle 27 n at the boundary of
Aand BonT=0

B



u 1%

if space is 1d and A is an interval (u, v) (and B is the
complement) then Z(R,) can be thought of as the
insertion of twist operators into n copies of the CFT:

Z(Rn)/Z{" = (T-n(U)Ta(V))(cFT)"
these have similar properties to other local operators e.g.
in a massless QFT (a CFT)
(Ton(U)Ta(V)) ~ |u — v| 24
in a massive QFT,

(Tn) ~ m®" and (T-n(U)Tn(v)) — (77’>2 ~ e 2mlu—v|



» main result for d =1: A, = (¢/12)(n— 1/n) where c is the
central charge of the UV CFT

> R a=271n

» w = log z maps this into a cylinder of length log R and
circumference o

Zeone(27N) _ ch1(27rn) enclog R/12mn

= ~ R~An
Zcone(zﬂ')n ch1(27r)n (eWC|Og H/127r)n




» from this we see for example that for a single interval A of
length ¢ [Holzhey, Larsen, Wilczek 1994]

8 - n
Sa~—5n . (=287 — (c/3)log(¢/¢)

o(¢)
» many more universal results, eg finite-temperature
cross-over between entanglement and thermodynamic

entropy (8 =1/kgT):

Sa = (c/3)log ((8/m)sinh(rt/B))
~ (c/3)log? fort < g
~ wcl/36 for >



Massive QFT in 1+1 dimensions

» for 2 intervals A = (—o0,0) and B = (0, o)

Sa~ —(c/6)log(m/e) asm— 0

» the entanglement diverges at a quantum phase transition
and gives a basis-independent way of characterising the
underlying CFT

» this is numerically the most accurate way of determining ¢
for a given lattice model



Two intervals /A\

u; Vi ) V2

Z(Rn)/Z" = (T-n(th)Ta(v1) T-n(t2)Tn(v2))

» in general there is no simple result but for
|uj — vj| < |ug — Up] we can use an operator product
expansion

n
v):ZC{k/}(u—vH (Z(u+ V)

{ki}
in terms of a complete set of local operators &
» this gives the Rényi entropies as an expansion

> C?&}”ZjAkf where n = ((u1—vi)(te—V2))/((u1—t)(v1

{kit

» the C{kj} encode all the data of the CFT

—Vv2))



Higher dimensions d > 1

-

» the conifold R, is now {2d conifold} x {boundary 0A}

"

log Z(Rn) ~ Vol(dA) - e~(@=1)

> [Srednicki 1992]
» coefficient is non-universal



» for even d + 1 there are interesting corrections to the area
law

Vol(9A) m? log(me), alog(Ra/¢)
whose coefficients are related to curvature anomalies of
the CFT and are universal

» e.g. ais the ‘a-anomaly’ which is supposed to decrease
along RG flows between CFTs [Komargodski-Schwimmer]

» it would interesting to give an entanglement-based
argument for this result [Casini-Huerta]



Mutual Information of multiple regions

b

» the non-universal ‘area’ terms cancel in
_ (n)
1M (A, A) = S + S — S,

» this mutual Rényi information is expected to be universal
depending only on the geometry and the data of the CFT

» e.g. for a free scalar field in 3+1 dimensions [JC 2013]

2
n*—1 R1 Hg
/(n)(A1,A2) ~ 15n3(n — 1) ( r122 >




Negativity

>

however, mutual information does not correctly capture the
guantum entanglement between A; and A, e.g. it also
includes classical correlations at finite temperature

more generally we want a way of quantifying entanglement
in a mixed state pa,ua,

» one computable measure is negativity [Vidal, Werner 2002]
> let pT2 be the partial transpose:
AjUA,

T
pA?qu(a'l , 82, a{|7al2) = pA1UA2(a17al2; a{l7a2)

TrpA ua, = 1, butit may now have negative eigenvalues A,
Log-negativity A = log Tr \pA ua,| =109 Akl
k
if this is > 0 there are negative eigenvalues. This is an

entanglement measure with nice properties, including
being an LOCC monotone



Negativity in QFT

» ‘replica trick’

Tr(pun,)" = D A =D |\|" if nis even
K K

» analytically continue to n=1to get >, || (!!)

» we can compute Tr (piqu)” by connecting the half-spaces
in the opposite order along As:

= ==

A Az




A, A,

> for pa,ua, we need (T_n(u1)Tn(v1)T-n(U2)Ta(V2))

» for p}quQ we need (T_p(u1)Ta(v1)Tr(U2)T-n(v2))
But

Tn:Tn = Tn (nodd) —1 forn—1
T2 ® Tnje (neven) — Tip@Trp forn— 1

I

so we get a non-trivial result if the intervals are close



» so for example for d > 1 for 2 large regions a finite
distance apart

N (A1, A2) x Area of common boundary between A; and A

» N appears to decay exponentially with separation of the
regions, even in a CFT



Other Related Interesting Stuff

» topological phases in 2 (and higher) spatial dimensions -
entanglement entropy distinguishes these in absence of
local order parameter [Kitaev/Preskill and many others]

» ’entanglement spectrum’ of the eigenvalues of log pa
[Haldane]

» Shannon entropy —Tr|W|? log |W2| seems to have
interesting properties depute being basis-dependent

» holographic computation of entanglement using AdS/CFT
[Ryu/Takayanagi and many others]

» time-dependence — in particular quantum quenches where
the system is prepared in a state |i) which is not an
eigenstate of hamiltonian: how do entanglement (and
correlation functions) behave?



