Entanglement in Quantum Field Theory

John Cardy

University of Oxford

DAMTP, December 2013

Outline

- Quantum entanglement in general and its quantification
- Path integral approach
- Entanglement entropy in 1+1-dimensional CFT
- ▶ Higher dimensions
- Mixed states and negativity

Work largely carried out with Pasquale Calabrese (Pisa) and Erik Tonni (Trieste)

Quantum Entanglement (Bipartite, Pure State)

- quantum system in a pure state $|\Psi\rangle$, density matrix $\rho = |\Psi\rangle\langle\Psi|$
- $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$
- Alice can make unitary transformations and measurements only in A, Bob only in the complement B
- in general Alice's measurements are entangled with those of Bob
- ► example: two spin-½ degrees of freedom

$$|\psi\rangle = \cos\theta |\uparrow\rangle_{A}|\downarrow\rangle_{B} + \sin\theta |\downarrow\rangle_{A}|\uparrow\rangle_{B}$$

Measuring bipartite entanglement in pure states

Schmidt decomposition:

$$|\Psi
angle = \sum_{j} c_{j} \, |\psi_{j}
angle_{\mathsf{A}} \otimes |\psi_{j}
angle_{\mathsf{B}}$$

with $c_j \ge 0$, $\sum_j c_j^2 = 1$, and $|\psi_j\rangle_A$, $|\psi_j\rangle_B$ orthonormal.

one quantifier of the amount of entanglement is the entropy

$$S_{A} \equiv -\sum_{j} |c_{j}|^{2} \log |c_{j}|^{2} = S_{B}$$

- if $c_1 = 1$, rest zero, S = 0 and $|\Psi\rangle$ is unentangled
- ▶ if all c_j equal, $S \sim \log \min(\dim \mathcal{H}_A, \dim \mathcal{H}_B) \max$ imal entanglement

equivalently, in terms of Alice's reduced density matrix:

$$\rho_{A} \equiv \text{Tr}_{B} |\Psi\rangle\langle\Psi|$$

$$S_A = -\text{Tr}_A \rho_A \log \rho_A = S_B$$
 von Neumann entropy

similar information is contained in the Rényi entropies

$$S_{\mathbf{A}}^{(n)} = (1-n)^{-1} \log \operatorname{Tr}_{\mathbf{A}} \rho_{\mathbf{A}}^{n}$$

 $\triangleright S_A = \lim_{n \to 1} S_A^{(n)}$

- other measures of entanglement exist, but entropy has several nice properties: additivity, convexity, . . .
- ▶ it is monotonic under Local Operations and Classical Communication (LOCC)
- it gives the amount of classical information required to specify ρ_A (important for numerical computations)
- it gives a basis-independent way of identifying and characterising quantum phase transitions
- in a relativistic QFT the entanglement in the vacuum encodes all the data of the theory (spectrum, anomalous dimensions, ...)

Entanglement entropy in QFT

In this talk we consider the case when:

- ▶ the degrees of freedom are those of a local relativistic QFT in large region R in R^d
- ▶ the whole system is in the vacuum state |0⟩
- ➤ A is the set of degrees of freedom in some large (compact) subset of R, so we can decompose the Hilbert space as

$$\mathcal{H} = \mathcal{H}_{A} \otimes \mathcal{H}_{B}$$

- in fact this makes sense only in a cut-off QFT (e.g. a lattice), and some of the results will in fact be cut-off dependent
- ► How does S_A depend on the size and geometry of A and the universal data of the QFT?

Rényi entropies from the path integral (d = 1)

▶ wave functional $\Psi(\{a\}, \{b\}) \propto$ conditioned path integral in imaginary time from $\tau = -\infty$ to $\tau = 0$:

$$\begin{split} &\Psi(\{\textbf{a}\},\{b\}) = Z_1^{-1/2} \int_{\textbf{a}(0)=\textbf{a},b(0)=b} [d\textbf{a}(\tau)][db(\tau)] \, e^{-(1/\hbar)S[\{\textbf{a}(\tau)\},\{b(\tau)\}]} \\ &\text{where } S = \int_{-\infty}^0 L(\textbf{a}(\tau),b(\tau)) \, d\tau \end{split}$$

▶ similarly $\Psi^*(\{a\}, \{b\})$ is given by the path integral from $\tau = 0$ to $+\infty$

$$\rho_{\mathbf{A}}(\mathbf{a}_1,\mathbf{a}_2) = \int db \, \Psi(\mathbf{a}_1,b) \Psi^*(\mathbf{a}_2,b)$$

▶ this is given by the path integral over \mathbb{R}^2 cut open along $A \cap \{\tau = 0\}$, divided by Z_1 :

Rényi entropies: example n = 2

$$\rho_{\mathsf{A}}(\mathbf{a}_1,\mathbf{a}_2) = \int db \, \Psi(\mathbf{a}_1,b) \Psi^*(\mathbf{a}_2,b)$$

$$\operatorname{Tr}_{A} \rho_{A}^{2} = \int da_{1} da_{2} db_{1} db_{2} \Psi(a_{1}, b_{1}) \Psi^{*}(a_{2}, b_{1}) \Psi(a_{2}, b_{2}) \Psi^{*}(a_{1}, b_{2})$$

$$\operatorname{Tr}_{\mathbf{A}} \rho_{\mathbf{A}}^{2} = Z(\mathcal{R}_{2})/Z_{1}^{2}$$

where $Z(\mathcal{R}_2)$ is the euclidean path integral (partition function) on an 2-sheeted conifold \mathcal{R}_2

▶ in general

$$\operatorname{Tr}_{\mathbf{A}} \rho_{\mathbf{A}}^{n} = Z(\mathcal{R}_{n})/Z_{1}^{n}$$

where the half-spaces are connected as

to form \mathcal{R}_n .

• conical singularity of opening angle $2\pi n$ at the boundary of A and B on $\tau = 0$

if space is 1d and A is an interval (u, v) (and B is the complement) then Z(R_n) can be thought of as the insertion of twist operators into n copies of the CFT:

$$Z(\mathcal{R}_n)/Z_1^n = \langle \mathcal{T}_{-n}(u)\mathcal{T}_n(v)\rangle_{(CFT)^n}$$

- these have similar properties to other local operators e.g.
- in a massless QFT (a CFT)

$$\langle \mathcal{T}_{-n}(u)\mathcal{T}_{n}(v)\rangle \sim |u-v|^{-2\Delta_{n}}$$

in a massive QFT,

$$\langle \mathcal{T}_n \rangle \sim m^{\Delta_n}$$
 and $\langle \mathcal{T}_{-n}(u) \mathcal{T}_n(v) \rangle - \langle \mathcal{T}_n \rangle^2 \sim \mathrm{e}^{-2m|u-v|}$

▶ main result for d = 1: $\Delta_n = (c/12)(n - 1/n)$ where c is the central charge of the UV CFT

- ▶ consider a cone of radius R and opening angle $\alpha = 2\pi n$
- $w = \log z$ maps this into a cylinder of length $\log R$ and circumference α

$$\frac{Z_{\rm cone}(2\pi n)}{Z_{\rm cone}(2\pi)^n} = \frac{Z_{\rm cyl}(2\pi n)}{Z_{\rm cyl}(2\pi)^n} \sim \frac{{\rm e}^{\pi c \log R/12\pi n}}{({\rm e}^{\pi c \log R/12\pi})^n} \sim R^{-\Delta_n}$$

▶ from this we see for example that for a single interval A of length ℓ [Holzhey, Larsen, Wilczek 1994]

$$\left. S_{\mathsf{A}} \sim -\left. rac{\partial}{\partial n} \right|_{n=1} \ell^{-2\Delta_n} = (c/3) \log(\ell/\epsilon) \right.$$

- ▶ note this is much less than the entanglement in a *typical* state which is $O(\ell)$
- ▶ many more universal results, eg finite-temperature cross-over between entanglement and thermodynamic entropy ($\beta = 1/k_BT$):

$$S_{A} = (c/3) \log ((\beta/\pi) \sinh(\pi \ell/\beta))$$
 $\sim (c/3) \log \ell \quad \text{for } \ell \ll \beta$
 $\sim \pi c \ell/3 \beta \quad \text{for } \ell \gg \beta$

Massive QFT in 1+1 dimensions

for 2 intervals $A=(-\infty,0)$ and $B=(0,\infty)$ $S_A\sim -(c/6)\log(m/\epsilon)\quad \text{as } m\to 0$

- the entanglement diverges at a quantum phase transition and gives a basis-independent way of characterising the underlying CFT
- this is numerically the most accurate way of determining c for a given lattice model

Two intervals

$$Z(\mathcal{R}_n)/Z^n = \langle \mathcal{T}_{-n}(u_1)\mathcal{T}_n(v_1)\mathcal{T}_{-n}(u_2)\mathcal{T}_n(v_2) \rangle$$

in general there is no simple result but for $|u_j - v_j| \ll |u_1 - u_2|$ we can use an operator product expansion

$$\mathcal{T}_{-n}(u)\mathcal{T}_{n}(v) = \sum_{\{k_{j}\}} C_{\{k_{j}\}}(u-v) \prod_{j=1}^{n} \Phi_{k_{j}}(\frac{1}{2}(u+v)_{j})$$

in terms of a complete set of local operators Φ_{k_j}

▶ this gives the Rényi entropies as an expansion

$$\sum_{\{k_i\}} C_{\{k_j\}}^2 \eta^{\sum_j \Delta_{k_j}} \text{ where } \eta = ((u_1 - v_1)(u_2 - v_2))/((u_1 - u_2)(v_1 - v_2))$$

the C_{{ki}} encode all the data of the CFT

Higher dimensions d > 1

▶ the conifold \mathcal{R}_n is now $\{2d \text{ conifold}\} \times \{\text{boundary } \partial A\}$

$$\log Z(\mathcal{R}_n) \sim \text{Vol}(\partial A) \cdot \epsilon^{-(d-1)}$$

- ► this is the 'area law' in 3+1 dimensions [Srednicki 1992]
- coefficient is non-universal

▶ for even d + 1 there are interesting corrections to the area law

$$Vol(\partial A) m^2 log(m_{\epsilon}), \quad a log(R_A/\epsilon)$$

whose coefficients are related to curvature anomalies of the CFT and are universal

- e.g. a is the 'a-anomaly' which is supposed to decrease along RG flows between CFTs [Komargodski-Schwimmer]
- it would interesting to give an entanglement-based argument for this result [Casini-Huerta]

Mutual Information of multiple regions

▶ the non-universal 'area' terms cancel in

$$I^{(n)}(A_1, A_2) = S_{A_1}^{(n)} + S_{A_2}^{(n)} - S_{A_1 \cup A_2}^{(n)}$$

- this mutual Rényi information is expected to be universal depending only on the geometry and the data of the CFT
- ▶ e.g. for a free scalar field in 3+1 dimensions [JC 2013]

$$I^{(n)}(A_1, A_2) \sim \frac{n^4 - 1}{15n^3(n-1)} \left(\frac{R_1 R_2}{r_{12}^2}\right)^2$$

Negativity

- ► however, mutual information does not correctly capture the quantum entanglement between A₁ and A₂, e.g. it also includes classical correlations at finite temperature
- ► more generally we want a way of quantifying entanglement in a mixed state $\rho_{A_1 \cup A_2}$
- one computable measure is negativity [Vidal, Werner 2002]
- ▶ let $\rho_{A_1 \cup A_2}^{T_2}$ be the *partial* transpose:

$$\rho_{\mathbf{A}_1 \cup \mathbf{A}_2}^{T_2}(a_1, a_2; a_1', a_2') = \rho_{\mathbf{A}_1 \cup \mathbf{A}_2}(a_1, a_2'; a_1', a_2)$$

► Tr $\rho_{A_1 \cup A_2}^{T_2} = 1$, but it may now have negative eigenvalues λ_k

Log-negativity
$$\mathcal{N} = \log \operatorname{Tr} \left| \rho_{\mathbf{A}_1 \cup \mathbf{A}_2}^{\mathbf{T}_2} \right| = \log \sum_{\mathbf{k}} |\lambda_{\mathbf{k}}|$$

 if this is > 0 there are negative eigenvalues. This is an entanglement measure with nice properties, including being an LOCC monotone

Negativity in QFT

'replica trick'

$$\operatorname{Tr}\left(\rho_{\mathbf{A}_{1}\cup\mathbf{A}_{2}}^{T_{2}}\right)^{n} = \sum_{k} \lambda_{k}^{n} = \sum_{k} |\lambda_{k}|^{n} \quad \text{if } n \text{ is even}$$

- ▶ analytically continue to n = 1 to get $\sum_{k} |\lambda_{k}|$ (!!)
- we can compute $\operatorname{Tr}(\rho_{A_1 \cup A_2}^{T_2})^n$ by connecting the half-spaces in the opposite order along A_2 :

$$A_1 \qquad A_1$$

▶ for
$$\rho_{A_1 \cup A_2}$$
 we need $\langle \mathcal{T}_{-n}(u_1) \mathcal{T}_n(v_1) \mathcal{T}_{-n}(u_2) \mathcal{T}_n(v_2) \rangle$

• for
$$\rho_{A_1 \cup A_2}^{T_2}$$
 we need $\langle \mathcal{T}_{-n}(u_1) \mathcal{T}_n(v_1) \mathcal{T}_n(u_2) \mathcal{T}_{-n}(v_2) \rangle$

But

so we get a non-trivial result if the intervals are close

So for example for d > 1 for 2 large regions a finite distance apart

 $\mathcal{N}(A_1,A_2) \propto \text{Area of common boundary between } A_1 \text{ and } A_2$

 $ightharpoonup \mathcal{N}$ appears to decay exponentially with separation of the regions, even in a CFT

Other Related Interesting Stuff

- topological phases in 2 (and higher) spatial dimensions entanglement entropy distinguishes these in absence of local order parameter [Kitaev/Preskill and many others]
- 'entanglement spectrum' of the eigenvalues of $\log \rho_A$ [Haldane]
- Shannon entropy -Tr|Ψ|² log |Ψ²| seems to have interesting properties depute being basis-dependent
- holographic computation of entanglement using AdS/CFT [Ryu/Takayanagi and many others]
- ▶ time-dependence in particular *quantum quenches* where the system is prepared in a state $|\psi\rangle$ which is not an eigenstate of hamiltonian: how do entanglement (and correlation functions) behave?