
Introduction to Conformal Field Theory Trinity Term 2014 Prof. J. Cardy

Notes on the Conformal Bootstrap

These notes are an addendum to my 2008 les Houches lecture notes. For further details,
see, eg,
http://arxiv.org/pdf/1111.2115.pdf

Global conformal invariance for any d constrains the 4-point function of the same (scalar)
field to have the form
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This 4-point function may be evaluated using the OPEs

φ(x1)φ(x2) = x
−2∆φ

12

∑
O
bOCO(x12, ∂x1)O(x1)

φ(x3)φ(x4) = x
−2∆φ

34

∑
O′
bO′CO(x34, ∂x3)O(x3)

together with the 2-point functions 〈O(x1)O(x3)〉. In the above, the sums are over primary
operators O, which for d > 2 means operators corresponding to highest weight states of
the global conformal group. All other operators are derviatives of these. It turns out that
the functions CO are entirely determined by this global conformal group, acting on both
sides with the raising operators. Thus we can write

g(u, v) =
∑
O
b2
Og

`
∆(u, v)

where the functions g`∆(u, v) depend only on the dimensions and spins of the fields O. In
this context they are called conformal blocks. They are entirely determined by conformal
invariance. The main point is that, by exchanging e.g. x1 ↔ x3, we must have, by crossing
symmetry,

v∆φg(u, v) = u∆φg(v, u)

This looks like a tautology, but, like modular invariance, when combined with the expan-
sion above, it is non-trivial. The reason it is called a ‘bootstrap’, is that we may imagine
implementing it first for the fields with smallest dimension ∆φ, and getting constraints on
which ∆s may occur as intermediate states. Then we can implement it for the four-point
functions of these fields, and so on. The hope is that there will be only a denumerable
number of solutions to the whole entire bootstrap. For d = 2 and c < 1, for example, we
know this to be the case for other reasons.
Let use first see how it works there. In 2d it is better to think of the cross-ratio as being
complex: η = z12z34/z13z24, etc. Then we can think of g(u, v) as a function of η and η̄.
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Suppose for simplicity that φ is a Kac φ2,1 field. Then by the same arguments as in the
SLE chapter, the 4-point function will satisfy a linear 2nd order pde, which translates
into an ode as a function of η. It has regular singular points as the xjk → 0, that is at
η = 0, 1,∞, and is there a linear combination of 2 hypergometric functions.

g =
∑

j,k=1,2

AjkFj(η)Fk(η̄)

where F1(η) = 1 + O(η), F2(η) ∼ η∆3,1(1 + O(η)). These two terms reflect the OPE
φ1,2 · φ1,2 = 1 + φ1,3. In the case of the Ising CFT F1,2 = (1 ± (1 − η)1/2)1/2. We can
determine the coefficients in a number of ways. Since g should be single-valued under
η → ηe2πi, the off-diagonal terms should vanish. We can also do the same about η = 1.
Alternatively, more in the spirit of the bootstrap, we can demend that it behave properly
under η → 1− η. The result is that the only solution is

g = |F1(η)|2 + |F2(η)|2

A similar method works for all the mininmal models. Once we know the 4-point function
we can extract the OPE coefficients. In the above case we find that c12;12;13 = 1

2
.

But in higher dimensions we can only hope either to solve it approximately, or to get
bounds on the possible solutions.
It is useful to write the above relation as

u∆φ − v∆φ +
∑′ b2

O

(
u∆φg`∆(v, u)− v∆φg`∆(u, v)

)
= 0

where the sum does not include the contribution of the identity operator.
Since this true for any (u, v) we may expand around the symmetric point u = v, to any
desired order. (This corresponds to the case when the 4 points lie at the vertices of a
square.) This gives a system of linear equations with non-negative coefficients b2

O. The
problem is reduced to a linear programming problem. Note that we can always truncate
the expansion in ∆, equivalent to exploring the finite subspace where all the bO for larger
∆ vanish. If we then find no solution to these linear constraints for particular values of
∆φ and ∆s then we know there is no CFT with these values.
In 3D for scalar exchange ` = 0 the conformal blocks are

g∆(u, v) = u∆/2
∞∑

m,n=0

((∆/2)m(∆/2)m+n)2

m!n!(∆− 1/2)m(∆)2m+n

um(1− v)n

It is easy to see that, for a given ∆φ, we cannot make the intermediate ∆’s too big. As
∆→∞, the conformal block g(u, v) ∼ u∆/2e∆ue∆(1−v).
So we should have

v∆φ(1 +
∑

b2
Ou

∆/2e∆ue∆(1−v))

being symmetric under v ↔ u. Since this is a function which decays as a power times
something growing exponentially, this cannot happen. So there should be a lower bound
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on ∆ for a given ∆φ. We also see from this that the bound will less stringent as ∆φ

increases.
The linear programming approach is completely rigorous but at some point we have to
resort to numerics. The results are shown below, for 3d CFT which has the properties
expected of the scaling limit of the 3d Ising model: a Z2 odd primary σ, a Z2 even primary
ε, and an irrelevant primary ε′, corresponding to the fields φ, φ2 and φ4 in a φ4 field theory.
With minimal assumptions about ∆ε′ one finds the bounds shown below. Remarkably, the
best known values for the 3d Ising model lie very close to the ‘corner’ on the boundary.
This is presumably telling us something either exact or almost exact about the CFT.

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

3


