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Fields Medal 2010 for Stanislav Smirnov, University of Geneva

Conformal Invariance and the Scaling Limits of Lattice Models

John Cardy
Rudolf Peierls Institute for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom,

and All Souls College, Oxford

At the International Con-
gress of Mathematicians, 
held in Hyderabad, India, 
Stanislav Smirnov of the 
University of Geneva was 
awarded the 2010 Fields 
Medal for the proof of con-
formal invariance of perco-
lation and the planar Ising 
model in statistical phys-
ics. As most people know, 
the Fields Medal is regard-
ed as the mathematics 

equivalent of a Nobel Prize (although it is awarded only to 
those not over the age of 40.)

What was Smirnov's achievement, and why is it important 
for physics? His work can be seen as the rigorous math-
ematical treatment of a set of ideas originating in theoretical 
physics in the late 1960s. These concerned the behaviour 
of systems close to a critical point, or second order phase 
transition. A famous example is the Ising model of ferro-
magnetism, first formulated by Lenz. In this model quantum 
spins, which can be ‘up’ or ‘down’, are situated at the sites 
of a regular lattice. There is an interaction between them 
which favours neighbouring spins being in the same state, 
either both up or both down. At low temperatures the sys-
tem is a ferromagnet: a majority of spins are all up, or all 
down. At high temperatures there is no net magnetisation. 
These two regimes are separated by a critical point. Al-
though certain properties of the square lattice Ising model 
were famously computed exactly by Onsager much earlier, 
a more physical understanding came with the realisation by 
Wilson, Fisher, Kadanoff and others that at the critical point 
the system is scale invariant. This means that if we were 
to take a photograph of such a system at the critical point 
(colouring, for example, up spins black and down spins 
white), and then blow up the picture by some factor b>1, 
then (ignoring the detailed graininess due to the lattice) the 

pictures would look statistically similar – we could not dif-
ferentiate between the original or the blown-up version.

This idea was at the basis of the renormalisation group, 
leading to a deep understanding of the different kinds of 
critical behaviour which can occur in nature. For this work 
Wilson was awarded the Nobel Prize in 1982. However not 
long after the first papers, in 1970, the young Russian phys-
icist Alexander Polyakov [1] generalised the idea of scale 
invariance to conformal invariance: he argued that the pho-
tograph should also remain statistically similar when the 
blow-up factor b is allowed to vary smoothly as a func-
tion of position. These transformations mathematically are 
called conformal mappings: they locally preserve angles 
but not volumes. In the 1980s a whole edifice of theoretical 
physics was erected on the basis of Polyakov's hypothesis: 
it led to a host of new analytic results in critical behaviour, 
especially in two dimensions, and went under the name of 
conformal field theory (CFT). Interestingly, the mathematical 
tools required for this were first developed in string theory. 
They imply that the correlation functions of local observa-
bles (for example the spins in the Ising model) obey certain 
linear differential equations.

However, there was no proof that the scaling limit (where 
the grains of Fig. 1 are supposed to be infinitesimally small) 
is in fact conformally invariant, for the Ising model or any 
other similar system. The situation came to a head when 
theoretical physicists began to apply CFT to percolation. 
This is an even simpler problem than the Ising model: the 
sites of the lattice are independently labelled either white 
(with probability p) or yellow (with probability 1− p). The in-
terest comes in asking questions about clusters of white 
or yellow spins. For small p there are only small clusters of 
white spins in a sea of yellow, and vice versa if p is close 
to one. Suppose the whole system is contained in a large 
rectangle. There exists a critical value pc at which a white 
cluster (say) is just able to span the system from top to bot-
tom. At p=pc, what is the probability of this happening? The 

The Community of Swiss Physicists is very happy and 
honoured that Stanislav Smirnov, professor in the Ana-
lysis, Mathematical Physics and Probability group of the 
University of Geneva since 2003, has won the Fields Me-
dal 2010, the most prestigious prize in mathematics. He 
was rewarded for his proof of conformal invariance at 
criticality both for site percolation on the triangular lat-
tice and for the two-dimensional Ising model. Since he 
is close to physics not only in spirit but also in action, 
as for example by organizing the "Physical Mathematics 
Seminars" in Geneva, it is very natural to acknowledge 
his achievement in our journal. We are grateful to Prof. 

John Cardy for retracing the extraordinary story leading 
from the early days of critical phenomena to this mathe-
matical tour de force. John Cardy has himself played a 
central role in the formulation of the problem, specifically 
through a conjecture, now widely known as the Cardy 
formula, for certain correlations in critical percolation. 
His article shows nicely how insights from both physi-
cists and mathematicians are intertwined in the exciting 
achievement of Stanislav Smirnov.
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answer depends on the aspect ratio of the rectangle: a tall 
narrow one is more difficult to cross than a short fat one. In 
1992 an exact formula was conjectured [2] using ideas of 
CFT applied to percolation.

The key point was to regard the places where the bound-
ary conditions change (in this example the corners of the 
rectangle) as local observables similar to the spins them-
selves, so that the crossing probability obeys a similar sort 
of linear differential equation in CFT. The solution of this, 
known as the ‘Cardy formula’, is quite non-trivial, involv-
ing hypergeometric functions, but it agrees very well with 
the results of numerical simulations and seemed to be cor-
rect. However its existence presented a puzzle to probabil-
ists who had been working on percolation for many years, 
as it seemed to be far beyond the reach of their existing 
methods, and the CFT approach rested on far too many 
unproven hypotheses.

In 2000 a breakthrough came in the form of a new de-
scription of conformally invariant curves, called Schramm-
Loewner evolution (SLE), developed by Oded Schramm [3] 
and his coworkers Greg Lawler and Wendelin Werner (who 
also received a Fields Medal, in 2006). This is too compli-
cated to explain here, but it laid out a new mathematical 
framework within which to discuss these problems. And 
Schramm showed that if the curves which form the cluster 
boundaries of percolation clusters satisfy the postulates of 
SLE, Cardy’s formula would follow.

Enter Smirnov. In 2001 he actually proved [4] the Cardy for-
mula from first principles, for a particular lattice percolation 
model. The essentials of his argument are relatively simple: 
he showed that a certain local observable of percolation is 
discretely holomorphic: that is, it is approximately given by 
the real part of an analytic function. Moreover the approx-
imation gets better and better as the lattice spacing ap-
proaches zero. Complex analytic functions are well-known 
to be linked to conformal mappings in two dimensions: as 
undergraduates we learn how to use them to solve prob-
lems in electrostatics. Once one knows the behaviour of 
such a function on the boundary, one knows it everywhere. 
This line of argument led Smirnov to his proof of the Cardy 
formula. Moreover, he showed it to be true in an arbitrary 
region, and that, it turns out, is the main requirement to re-
versing Schramm’s argument and showing that the bound-
aries of percolation clusters are indeed described by SLE.

This was not his only achievement cited for the Fields Med-
al. In 2006 he announced a similar result [5] for curves in 
the two-dimensional Ising model, giving at last a firm math-
ematical basis for Polyakov’s 1970 hypothesis.

These mathematical results are not simply a matter of dot-
ting ‘i’s and crossing ‘t’s in arguments which were already 
well known to theoretical physicists. SLE has led to a whole 
new way of understanding certain aspects of CFT. Smir-
nov’s discrete holomorphicity has been verified for many 
other two-dimensional lattice models (although the proof of 
convergence to an analytic function in these other cases is 
still missing) and there also appears to be a (so far) poorly 

understood relationship to integrability, a completely differ-
ent field of mathematical physics but one which underlies 
Onsager’s original results. This striking example of cross-
fertilisation between physics and mathematics is likely to 
have a long way yet to run.
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Fig. 1 (courtesy S. Smirnov): Percolation of water through a 'rock', 
on different scales. The rock is represented by yellow, and the 
water, shown in blue, can run from top to bottom only through 
the spaces in between. The spaces not reached by the water are 
shown in white. The water occupies a cluster which spans the 
system from the top edge to the bottom edge. Cardy's formu-
la, proved by Smirnov, gives the probability that such a cluster 
exists, in the scaling limit when the size of the pores gets infinitely 
fine. SLE gives information about the fractal curve which forms the 
boundary of this cluster.


