

Classical Mechanics I

1. A chain of length l is hung from two points that are at the same level but are distance $s < l$ apart. The chain adopts that curve $z(x)$ (a **catenary**) which minimizes its potential energy $W[z(x)]$. By minimizing the chain's potential energy subject to its length being l , show that z satisfies

$$(z - \lambda) \frac{d^2 z}{dx^2} - \left(\frac{dz}{dx} \right)^2 - 1 = 0,$$

where λ is a Lagrange multiplier.

Solve for $z(x)$. [Hint: define $u \equiv dz/dx$ and show that

$$\frac{u du}{1 + u^2} = \frac{dz}{z - \lambda} \quad].$$

2. Write down the Lagrangian for the motion of a particle of mass m in a potential $V(r, \phi)$ when referred to planar polar coordinates (r, ϕ) . Hence show that the equations of motion are

$$m\ddot{r} - mr\dot{\phi}^2 = -\frac{\partial V}{\partial r} \quad mr\ddot{\phi} + 2m\dot{r}\dot{\phi} = -\frac{1}{r} \frac{\partial V}{\partial \phi}.$$

3. A particle of mass m moves in a spherically-symmetric potential $V(r)$. Show that the motion is confined to a plane.

Obtain the Lagrangian for motion in this plane in terms of the variables $u \equiv 1/r$ and the angle ϕ . Show that if $V(r) = -\alpha/r$ one has

$$u(\phi) = A \cos(\phi - \phi_0) + B,$$

where A , B and ϕ_0 are arbitrary constants. Show that the orbit is an ellipse if $B > A$ and a parabola or hyperbola otherwise.

4. Use a Lagrangian to show that when referred to spherical polar coordinates, the equations of motion of a particle in a gravitational potential $V(\mathbf{x})$ are

$$\begin{aligned} 0 &= \ddot{r} - r(\dot{\theta}^2 + \sin^2 \theta \dot{\phi}^2) + \frac{\partial V}{\partial r} \\ 0 &= \frac{d}{dt}(r^2 \dot{\theta}) - r^2 \dot{\phi}^2 \sin \theta \cos \theta + \frac{\partial V}{\partial \theta} \\ 0 &= \frac{d}{dt}(r^2 \sin^2 \theta \dot{\phi}) + \frac{\partial V}{\partial \phi}. \end{aligned}$$

In the case in which $V = V(r)$ is spherically symmetric, show that

$$r^2 \sqrt{\dot{\theta}^2 + \sin^2 \theta \dot{\phi}^2}$$

is a conserved quantity and interpret this result physically.

5. The bottom spike of an axisymmetric top of mass m lies distance a below the top's centre of gravity. Show that when the top is spinning with its spike in contact with a rough floor, the system's Lagrangian is

$$L = \frac{1}{2}I_1(\dot{\phi}^2 \sin^2 \theta + \dot{\theta}^2) + \frac{1}{2}I_3(\dot{\phi} \cos \theta + \dot{\psi})^2 - mga \cos \theta,$$

where (θ, ϕ, ψ) are Euler angles relative to a vertical \mathbf{k} axis and I_3 is the principal moment of inertia about the top's symmetry axis. Show that the top can precess steadily at fixed inclination to the vertical only if θ satisfies

$$0 = mga + (I_1 - I_3)\dot{\phi}^2 \cos \theta - I_3\dot{\phi}\dot{\psi}.$$

6. A particle of mass m_1 hangs by a light string of length l from a rigid support, and a second mass, m_2 , hangs by an identical string from m_1 . The angles with the vertical of the strings supporting m_1 and m_2 are θ and ϕ , respectively. Write down the Lagrangian $L(\theta, \phi, \dot{\theta}, \dot{\phi})$ of the system. Hence show that the frequencies of the two normal modes of oscillation about equilibrium are ω_{\pm} , where

$$\omega_{\pm}^2 = \frac{g}{l} \frac{m_1 + m_2}{m_1} \left[1 \pm \sqrt{\frac{m_2}{m_1 + m_2}} \right].$$

Describe the motion in each of the normal modes in the cases (a) $m_1 \gg m_2$, and (b) $m_2 \gg m_1$.

7. A circular hoop of mass m and radius a hangs from a point on its circumference and is free to oscillate in its own plane. A bead of mass m can slide without friction around the hoop. Choose a set of generalized coordinates and write down the Lagrangian for the system. Show that the natural frequencies for small oscillations about equilibrium are $\omega_1 = \sqrt{2g/a}$ and $\omega_2 = \sqrt{g/2a}$.

8. The (x, y, z) frame of reference rotates with angular speed $\boldsymbol{\omega} = \omega \mathbf{k}$. A particle of mass m moves in the potential

$$V(x, y, z) = \frac{1}{2}m(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2).$$

By solving for the frequencies of the particle's normal modes about the equilibrium $\mathbf{x} = 0$, show that the motion is unstable if $\omega_x < \omega < \omega_y$.

9. A particle of mass m slides inside a smooth straight tube OA to which it is connected at point O by a light spring of natural length a and spring constant mk/a . The system rotates in a horizontal plane with constant angular velocity ω about a fixed vertical axis through O. Determine the distance r of the particle from O at time t for the case when $\omega^2 < k/a$, if $r = a$ and $\dot{r} = 0$ at $t = 0$. Show also for this case that the maximum value of the reaction of the tube on the particle is $2ma\omega^3/b$, where $b^2 \equiv (k/a - \omega^2)$.

10. What is meant by the terms *symmetry principle* and *conservation law* as used in classical dynamics? Give simple examples to illustrate the symmetries underlying the conservation of linear and angular momentum.

A system with three degrees of freedom described by coordinates q_1, q_2, q_3 has Lagrangian

$$L = \frac{1}{2}(q_1^2 + \dot{q}_2^2 + \dot{q}_3^2) - \frac{1}{2}(q_1^2 + q_2^2 + q_3^2) - \alpha(q_2q_3 + q_3q_1 + q_1q_2),$$

where $0 < \alpha < \frac{1}{2}$. Show that L is invariant under infinitesimal rotations about the $(1, 1, 1)$ axis in q -space, and hence find a constant of motion other than the total energy. Verify from the equations of motion that it is indeed constant.

11. A particle with position coordinates \mathbf{r} moves in a central potential $V(r)$. By considering the quantity $(\mathbf{r} \times \dot{\mathbf{r}})$ show that the orbit of the particle lies in a fixed plane.

Find all potential functions $V(r)$ and corresponding functions $\alpha(r)$ for which the vector

$$\mathbf{K} = \dot{\mathbf{r}} \times (\mathbf{r} \times \dot{\mathbf{r}}) + \alpha(r)\mathbf{r}$$

is conserved.

Find also the potentials $V(r)$ and functions $\beta(r)$ for which the components of the matrix

$$Q_{ij} \equiv \dot{r}_i \dot{r}_j + \beta(r) r_i r_j$$

are constants of the motion, where r_i, \dot{r}_i ($i = 1, 2, 3$) are the components of position and velocity of the particle along any three independent fixed axes.

Classical Mechanics II

1. Show that if the Hamiltonian is independent of a generalized coordinate q_0 , then the conjugate momentum p_0 is a constant of motion. Such coordinates are called **cyclic coordinates**. Give two examples of physical systems that have a cyclic coordinate.
2. Show that in spherical polar coordinates the Hamiltonian of a particle of mass m moving in a potential $V(\mathbf{x})$ is

$$H = \frac{1}{2m} \left(p_r^2 + \frac{p_\theta^2}{r^2} + \frac{p_\phi^2}{r^2 \sin^2 \theta} \right) + V(\mathbf{x}).$$

Show that $p_\phi = \text{constant}$ when $\partial V / \partial \phi \equiv 0$ and interpret this result physically.

Show that $[H, K] = 0$ where $K \equiv p_\theta^2 + \frac{p_\phi^2}{\sin^2 \theta}$. By expressing K as a function of $\dot{\theta}$ and $\dot{\phi}$ interpret this result physically.

Consider circular motion with angular momentum h in a spherical potential $V(r)$. Evaluate $p_\theta(\theta)$ when the orbit's plane is inclined by ψ to the equatorial plane. Show that $p_\theta = 0$ when $\sin \theta = \pm \cos \psi$ and interpret this result physically.

3. The bottom spike of an axisymmetric top of mass m lies distance a below the top's centre of gravity. Show that when the top is spinning with its spike in contact with a rough floor, the system's Hamiltonian is

$$H = \frac{p_\theta^2}{2I_1} + \frac{(p_\phi - p_\psi \cos \theta)^2}{2I_1 \sin^2 \theta} + \frac{p_\psi^2}{2I_3} + mga \cos \theta.$$

where (θ, ϕ, ψ) are Euler angles relative to a vertical \mathbf{k} axis and I_3 is the principal moment of inertia about the top's symmetry axis. Identify two constants of the motion in addition to H .

Show that the top will precess steadily at fixed inclination to the vertical provided θ satisfies

$$0 = mga + \frac{(p_\phi - p_\psi \cos \theta)(p_\phi \cos \theta - p_\psi)}{I_1 \sin^4 \theta}.$$

4. Oblate spheroidal coordinates (u, v, ϕ) are related to regular cylindrical polars (R, z, ϕ) by

$$R = \Delta \cosh u \cos v \quad ; \quad z = \Delta \sinh u \sin v.$$

Show that in these coordinates momenta of a particle of mass m are

$$\begin{aligned} p_u &= m\Delta^2(\cosh^2 u - \cos^2 v)\dot{u}, \\ p_v &= m\Delta^2(\cosh^2 u - \cos^2 v)\dot{v}, \\ p_\phi &= m\Delta^2 \cosh^2 u \cos^2 v \dot{\phi}. \end{aligned}$$

Hence show that the Hamiltonian for motion in a potential $\Phi(u, v)$ is

$$H = \frac{p_u^2 + p_v^2}{2m\Delta^2(\cosh^2 u - \cos^2 v)} + \frac{p_\phi^2}{2m\Delta^2 \cosh^2 u \cos^2 v} + \Phi.$$

Show that $[H, p_\phi] = 0$ and hence that p_ϕ is a constant of motion. Identify it physically.

5. A particle of mass m and charge Q moves in the equatorial plane of a magnetic dipole. Given that the dipole has vector potential

$$\mathbf{A} = \frac{\mu_0 \mu \sin \theta}{4\pi r^2} \mathbf{e}_\phi,$$

evaluate the Hamiltonian $H(p_r, p_\phi, r, \phi)$ of the system.

The particle approaches the dipole from infinity at speed v and impact parameter b . Show that p_ϕ and the particle's speed are constants of motion.

Show further that for $Q\mu > 0$ the distance of closest approach to the dipole is

$$D = \frac{1}{2} \begin{cases} \sqrt{b^2 - a^2} + b & \text{for } b > a \\ \sqrt{b^2 + a^2} - b & \text{for } b < a \end{cases} \quad \text{where} \quad a^2 \equiv \frac{\mu_0 Q \mu}{\pi m v}.$$

6. A point charge q is placed at the origin in the magnetic field generated by a spatially confined current distribution. Given that

$$\mathbf{E} = \frac{q}{4\pi\epsilon_0} \frac{\mathbf{r}}{r^3}$$

and $\mathbf{B} = \nabla \times \mathbf{A}$ with $\nabla \cdot \mathbf{A} = 0$, show that the field's momentum

$$\mathbf{P} \equiv \epsilon_0 \int \mathbf{E} \times \mathbf{B} d^3\mathbf{x} = q\mathbf{A}(0).$$

Use this result to interpret the formula for the canonical momentum of a charged particle in an e.m. field. [Hint: write $\mathbf{E} = -(q/4\pi\epsilon_0)\nabla r^{-1}$ and $\mathbf{B} = \nabla \times \mathbf{A}$, expand the vector triple product and integrate each of the resulting terms by parts so as to exploit in one $\nabla \cdot \mathbf{A} = 0$ and in the other $\nabla^2 r^{-1} = -4\pi\delta^3(\mathbf{r})$. The tensor form of Gauss's theorem states that $\int d^3\mathbf{x} \nabla_i \mathbf{T} = \oint d^2S_i \mathbf{T}$ no matter how many indices the tensor \mathbf{T} may carry.]

7. For each convex function $f(x)$, i.e. for each $f(x)$ for which $f''(x) > 0$, define $F(x, p)$ to be the function of two variables

$$F(x, p) \equiv xp - f(x).$$

Show that for each fixed p , $F(x, p)$ has a unique maximum with respect to x when $f'(x) = p$. Let this maximum occur at x_p . We define the Legendre transform of f to be

$$\bar{f}(p) \equiv F(x_p, p).$$

Show that the Legendre transform $\bar{\bar{f}}(q)$ of $\bar{f}(p)$ is $\bar{\bar{f}}(q) = f(q)$. (In other words on applying the transform twice you recover your original function.)

[Hint: first show that $qp - \bar{f}(p)$ achieves its maximum w.r.t. p when $x_p = q$.]

8. Show that the generating function of the form $S(\mathbf{P}, \mathbf{x})$ which generates the Galilean transformation between frames in relative motion at velocity \mathbf{V} is

$$S = \mathbf{P} \cdot \mathbf{x} + \mathbf{V} \cdot (m\mathbf{x} - t\mathbf{P}).$$

9. A point transformation is specified by n functions $Q_j(\mathbf{q})$ of the old coordinates \mathbf{q} . Show that any point transformation is canonical by evaluating $[Q_i, Q_j]$, $[P_i, P_j]$, etc., where $\mathbf{P} \equiv \partial L / \partial \dot{\mathbf{Q}}$, with L the Lagrangian. [Hint: you may find it useful to prove first that $\dot{Q}_i = (\partial Q_i / \partial q_j) \dot{q}_j$ and $P_i = p_j (\partial q_j / \partial Q_i)$.]

10. Show that for a harmonic oscillator of frequency ω the Hamilton-Jacobi equation reads

$$\left(\frac{dS}{dx}\right)^2 + m^2\omega^2x^2 = 2mE.$$

Identify a new momentum P which allows S to be written

$$S(P, x) = (\theta + \frac{1}{2}\sin 2\theta)P \quad \text{where} \quad \theta(P, x) \equiv \arcsin\left(\sqrt{\frac{m\omega}{2P}}x\right).$$

Hence show that the action-angle coordinates of this system may be taken to be

$$\begin{aligned} P &\equiv \frac{1}{2m\omega}(p^2 + m^2\omega^2x^2), \\ Q &\equiv \arctan(m\omega x/p). \end{aligned}$$

(Notice that according to quantum mechanics $P/\hbar = (n + \frac{1}{2})$ takes half-integral values. The ‘old quantum theory’ was founded on assigning such special values to action variables divided by \hbar .)

11. Show that when the potential of the Problem 4 is of the form

$$\Phi(u, v) = \frac{U(u) - V(v)}{\cosh^2 u - \cos^2 v}, \quad (\dagger)$$

the Hamilton-Jacobi equation separates. Hence show that in the case $p_\phi = 0$ the other momenta are related to the coordinates by

$$\begin{aligned} p_u &= \pm\Delta\sqrt{2m[E \cosh^2 u - I - U(u)]} \\ p_v &= \pm\Delta\sqrt{2m[-E \cos^2 v + I + V(v)]}, \end{aligned}$$

where I is a constant of separation. Express I as a function of position in phase space. (Potentials of the form (\dagger) are called **Stäckel potentials** after P. Stäckel, who demonstrated that ellipsoidal coordinates provide the most general coordinate system in which one can separate the Hamilton-Jacobi equation of a particle moving in $\Phi(\mathbf{x})$.)