
Prof J.J. Binney 2rd year: Theory Option

Classical Mechanics I

1. A chain of length l is hung from two points that are at the same level but are
distance s < l apart. The chain adopts that curve z(x) (a catenary) which minimizes
it potential energy W [z(x)]. By minimizing the chain’s potential energy subject to its
length being l, show that z satisfies

(z − λ)
d2z

dx2
−

(dz
dx

)2

− 1 = 0,

where λ is a Lagrange multiplier.
Solve for z(x). [Hint: define u ≡ dz/dx and show that

u du
1 + u2

=
dz
z − λ

]
.

2. Write down the Lagrangian for the motion of a particle of mass m in a potential
V (r, φ) when referred to planar polar coordinates (r, φ). Hence show that the equations
of motion are

mr̈ −mrφ̇2 = −∂V
∂r

mrφ̈+ 2mṙφ̇ = −1
r

∂V

∂φ
.

3. A particle of mass m moves in a spherically-symmetric potential V (r). Show that
the motion is confined to a plane.

Obtain the Lagrangian for motion in this plane in terms of the variables u ≡ 1/r
and the angle φ. Show that if V (r) = −α/r one has

u(φ) = A cos(φ− φ0) +B,

where A, B and φ0 are arbitrary constants. Show that the orbit is an ellipse if B > A
and a parabola or hyperbola otherwise.

4. Use a Lagrangian to show that when referred to spherical polar coordinates, the
equations of motion of a particle in a gravitational potential V (x) are

0 = r̈ − r
(
θ̇2 + sin2 θφ̇2

)
+
∂V

∂r

0 =
d
dt

(
r2θ̇

)
− r2φ̇2 sin θ cos θ +

∂V

∂θ

0 =
d
dt

(
r2 sin2 θφ̇

)
+
∂V

∂φ
.

In the case in which V = V (r) is spherically symmetric, show that

r2
√
θ̇2 + sin2 θφ̇2

is a conserved quantity and interpret this result physically.
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5. The bottom spike of an axisymmetric top of mass m lies distance a below the top’s
centre of gravity. Show that when the top is spinning with its spike in contact with a
rough floor, the system’s Lagrangian is

L = 1
2I1(φ̇

2 sin2 θ + θ̇2) + 1
2I3(φ̇ cos θ + ψ̇)2 −mga cos θ,

where (θ, φ, ψ) are Euler angles relative to a vertical k axis and I3 is the principal
moment of inertia about the top’s symmetry axis. Show that the top can precess
steadily at fixed inclination to the vertical only if θ satisfies

0 = mga+ (I1 − I3)φ̇2 cos θ − I3φ̇ψ̇.

6. A particle of mass m1 hangs by a light string of length l from a rigid support,
and a second mass, m2, hangs by an identical string from m1. The angles with the
vertical of the strings supporting m1 and m2 are θ and φ, respectively. Write down
the Lagrangian L(θ, φ, θ̇, φ̇) of the system. Hence show that the frequencies of the two
normal modes of oscillation about equilibrium are ω±, where

ω2
± =

g

l

m1 +m2

m1

[
1±

√
m2

m1 +m2

]
.

Describe the motion in each of the normal modes in the cases (a) m1 � m2, and (b)
m2 � m1.

7. A circular hoop of mass m and radius a hangs from a point on its circumference and
is free to oscillate in its own plane. A bead of mass m can slide without friction around
the hoop. Choose a set of generalized coordinates and write down the Lagrangian for
the system. Show that the natural frequencies for small oscillations about equilibrium
are ω1 =

√
2g/a and ω2 =

√
g/2a.

8. The (x, y, z) frame of reference rotates with angular speed ω = ωk. A particle of
mass m moves in the potential

V (x, y, z) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2).

By solving for the frequencies of the particle’s normal modes about the equilibrium
x = 0, show that the motion is unstable if ωx < ω < ωy.

9. A particle of massm slides inside a smooth straight tube OA to which it is connected
at point O by a light spring of natural length a and spring constant mk/a. The system
rotates in a horizontal plane with constant angular velocity ω about a fixed vertical
axis through O. Determine the distance r of the particle from O at time t for the case
when ω2 < k/a, if r = a and ṙ = 0 at t = 0. Show also for this case that the maximum
value of the reaction of the tube on the particle is 2maω3/b, where b2 ≡ (k/a− ω2).
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10. What is meant by the terms symmetry principle and conservation law as used in
classical dynamics? Give simple examples to illustrate the symmetries underlying the
conservation of linear and angular momentum.

A system with three degrees of freedom described by coordinates q1, q2, q3 has
Lagrangian

L = 1
2 (q̇21 + q̇22 + q̇23)− 1

2 (q21 + q22 + q23)− α(q2q3 + q3q1 + q1q2),

where 0 < α < 1
2 . Show that L is invariant under infinitesimal rotations about the

(1, 1, 1) axis in q-space, and hence find a constant of motion other than the total energy.
Verify from the equations of motion that it is indeed constant.

11. A particle with position coordinates r moves in a central potential V (r). By
considering the quantity (r× ṙ) show that the orbit of the particle lies in a fixed plane.

Find all potential functions V (r) and corresponding functions α(r) for which the
vector

K = ṙ× (r× ṙ) + α(r)r

is conserved.
Find also the potentials V (r) and functions β(r) for which the components of the

matrix
Qij ≡ ṙiṙj + β(r)rirj

are constants of the motion, where ri, ṙi (i = 1, 2, 3) are the components of position
and velocity of the particle along any three independent fixed axes.
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Classical Mechanics II

1. Show that if the Hamiltonian is independent of a generalized coordinate q0, then the
conjugate momentum p0 is a constant of motion. Such coordinates are called cyclic
coordinates. Give two examples of physical systems that have a cyclic coordinate.

2. Show that in spherical polar coordinates the Hamiltonian of a particle of mass m
moving in a potential V (x) is

H =
1

2m

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)
+ V (x).

Show that pφ = constant when ∂V/∂φ ≡ 0 and interpret this result physically.

Show that [H,K] = 0 where K ≡ p2
θ +

p2
φ

sin2 θ
. By expressing K as a function of θ̇

and φ̇ interpret this result physically.
Consider circular motion with angular momentum h in a spherical potential V (r).

Evaluate pθ(θ) when the orbit’s plane is inclined by ψ to the equatorial plane. Show
that pθ = 0 when sin θ = ± cosψ and iterpret this result physically.

3. The bottom spike of an axisymmetric top of mass m lies distance a below the top’s
centre of gravity. Show that when the top is spinning with its spike in contact with a
rough floor, the system’s Hamiltonian is

H =
p2
θ

2I1
+

(pφ − pψ cos θ)2

2I1 sin2 θ
+
p2
ψ

2I3
+mga cos θ.

where (θ, φ, ψ) are Euler angles relative to a vertical k axis and I3 is the principal
moment of inertia about the top’s symmetry axis. Identify two constants of the motion
in addition to H.

Show that the top will precess steadily at fixed inclination to the vertical provided
θ satisfies

0 = mga+
(pφ − pψ cos θ)(pφ cos θ − pψ)

I1 sin4 θ
.

4. Oblate spheroidal coordinates (u, v, φ) are related to regular cylindrical polars
(R, z, φ) by

R = ∆ coshu cos v ; z = ∆ sinhu sin v.
Show that in these coordinates momenta of a particle of mass m are

pu = m∆2(cosh2 u− cos2 v)u̇,

pv = m∆2(cosh2 u− cos2 v)v̇,

pφ = m∆2 cosh2 u cos2 vφ̇.

Hence show that the Hamiltonian for motion in a potential Φ(u, v) is

H =
p2
u + p2

v

2m∆2(cosh2 u− cos2 v)
+

p2
φ

2m∆2 cosh2 u cos2 v
+ Φ.

Show that [H, pφ] = 0 and hence that pφ is a constant of motion. Identify it physically.
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5. A particle of mass m and charge Q moves in the equatorial plane of a magnetic
dipole. Given that the dipole has vector potential

A =
µ0µ sin θ

4πr2
eφ,

evaluate the Hamiltonian H(pr, pφ, r, φ) of the system.
The particle approaches the dipole from infinity at speed v and impact parameter

b. Show that pφ and the particle’s speed are constants of motion.
Show further that for Qµ > 0 the distance of closest approach to the dipole is

D = 1
2

{√
b2 − a2 + b for b > a√
b2 + a2 − b for b < a

where a2 ≡ µ0Qµ

πmv
.

6. A point charge q is placed at the origin in the magnetic field generated by a spatially
confined current distribution. Given that

E =
q

4πε0
r
r3

and B = ∇×A with ∇ ·A = 0, show that the field’s momentum

P ≡ ε0

∫
E×Bd3x = qA(0).

Use this result to interpret the formula for the canonical momentum of a charged
particle in an e.m. field. [Hint: write E = −(q/4πε0)∇r−1 and B = ∇ ×A, expand
the vector triple product and integrate each of the resulting terms by parts so as to
exploit in one ∇ · A = 0 and in the other ∇2r−1 = −4πδ3(r). The tensor form of
Gauss’s theorem states that

∫
d3x∇iT =

∮
d2SiT no matter how many indices the

tensor T may carry.]

7. For each convex function f(x), i.e. for each f(x) for which f ′′(x) > 0, define F (x, p)
to be the function of two variables

F (x, p) ≡ xp− f(x).

Show that for each fixed p, F (x, p) has a unique maximum with respect to x when
f ′(x) = p. Let this maximum occur at xp. We define the Legendre transform of f to
be

f(p) ≡ F (xp, p).

Show that the Legendre transform f(q) of f(p) is f(q) = f(q). (In other words on
applying the transform twice you recover your original function.)
[Hint: first show that qp− f(p) achieves its maximum w.r.t. p when xp = q.]

8. Show that the generating function of the form S(P,x) which generates the Gallilean
transformation between frames in relative motion at velocity V is

S = P · x + V · (mx− tP).

9. A point transformation is specified by n functions Qj(q) of the old coordinates q.
Show that any point transformation is canonical by evaluating [Qi, Qj ], [Pi, Pj ], etc.,
where P ≡ ∂L/∂Q̇, with L the Lagrangian. [Hint: you may find it useful to prove first
that Q̇i = (∂Qi/∂qj)q̇j and Pi = pj(∂qj/∂Qi).]
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10. Show that for a harmonic oscillator of frequency ω the Hamilton-Jacobi equation
reads (dS

dx

)2

+m2ω2x2 = 2mE.

Identify a new momentum P which allows S to be written

S(P, x) = (θ + 1
2 sin 2θ)P where θ(P, x) ≡ arcsin

(√
mω

2P
x
)
.

Hence show that the action-angle coordinates of this system may be taken to be

P ≡ 1
2mω

(p2 +m2ω2x2),

Q ≡ arctan(mωx/p).

(Notice that according to quantum mechanics P/h̄ = (n + 1
2 ) takes half-integral val-

ues. The ‘old quantum theory’ was founded on assigning such special values to action
variables divided by h̄.)

11. Show that when the potential of the Problem 4 is of the form

Φ(u, v) =
U(u)− V (v)

cosh2 u− cos2 v
, (†)

the Hamilton-Jacobi equation separates. Hence show that in the case pφ = 0 the other
momenta are related to the coordinates by

pu = ±∆
√

2m[E cosh2 u− I − U(u)]

pv = ±∆
√

2m[−E cos2 v + I + V (v)],

where I is a constant of separation. Express I as a function of position in phase
space. (Potentials of the form (†) are called Stäckel potentials after P. Stäckel, who
demonstrated that ellipsoidal coordinates provide the most general coordinate system
in which one can separate the Hamilton-Jacobi equation of a particle moving in Φ(x).)


