Prof J.J. Binney ord year: Theory Option

Classical Mechanics 1

1. A chain of length [ is hung from two points that are at the same level but are
distance s < [ apart. The chain adopts that curve z(x) (a catenary) which minimizes
it potential energy Wz(z)]. By minimizing the chain’s potential energy subject to its
length being [, show that z satisfies
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where A is a Lagrange multiplier.
Solve for z(z). [Hint: define u = dz/dz and show that
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2. Write down the Lagrangian for the motion of a particle of mass m in a potential
V(r, ¢) when referred to planar polar coordinates (r, ¢). Hence show that the equations
of motion are
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3. A particle of mass m moves in a spherically-symmetric potential V' (r). Show that
the motion is confined to a plane.

Obtain the Lagrangian for motion in this plane in terms of the variables u = 1/r
and the angle ¢. Show that if V(r) = —a/r one has

u(¢) = Acos(¢ — ¢o) + B,

where A, B and ¢q are arbitrary constants. Show that the orbit is an ellipse if B > A
and a parabola or hyperbola otherwise.

4. Use a Lagrangian to show that when referred to spherical polar coordinates, the
equations of motion of a particle in a gravitational potential V' (x) are
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In the case in which V' = V(r) is spherically symmetric, show that

r21/62 + sin? 02

is a conserved quantity and interpret this result physically.
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5. The bottom spike of an axisymmetric top of mass m lies distance a below the top’s
centre of gravity. Show that when the top is spinning with its spike in contact with a
rough floor, the system’s Lagrangian is

L= %Il(q52 sin? 6 + 02) + %Ig(éCOSQ + ¢)2 — mgacos 6,

where (0, ¢,1) are Euler angles relative to a vertical k axis and I3 is the principal
moment of inertia about the top’s symmetry axis. Show that the top can precess
steadily at fixed inclination to the vertical only if € satisfies

0 =mga+ (I; — I3)<;52 cos O — I3gnp.

6. A particle of mass m; hangs by a light string of length [ from a rigid support,
and a second mass, me, hangs by an identical string from m;. The angles with the
vertical of the strings supporting m; and my are § and ¢, respectively. Write down
the Lagrangian L(0, ¢, 0, ¢) of the system. Hence show that the frequencies of the two
normal modes of oscillation about equilibrium are w4, where

w2 =
* my my + mo
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Describe the motion in each of the normal modes in the cases (a) my > mao, and (b)
mo > mi.

7. A circular hoop of mass m and radius a hangs from a point on its circumference and
is free to oscillate in its own plane. A bead of mass m can slide without friction around
the hoop. Choose a set of generalized coordinates and write down the Lagrangian for
the system. Show that the natural frequencies for small oscillations about equilibrium

are w1 = y/2¢/a and wy = \/g/2a.

8. The (z,y, z) frame of reference rotates with angular speed w = wk. A particle of
mass m moves in the potential

Vi(z,y,z) = %m(wixQ + win + wﬁzQ).

By solving for the frequencies of the particle’s normal modes about the equilibrium
x = 0, show that the motion is unstable if w, < w < w,,.

9. A particle of mass m slides inside a smooth straight tube OA to which it is connected
at point O by a light spring of natural length a and spring constant mk/a. The system
rotates in a horizontal plane with constant angular velocity w about a fixed vertical
axis through O. Determine the distance r of the particle from O at time ¢ for the case
when w? < k/a, if r = a and 7 = 0 at t = 0. Show also for this case that the maximum
value of the reaction of the tube on the particle is 2maw? /b, where bv? = (k/a — w?).
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10. What is meant by the terms symmetry principle and conservation law as used in
classical dynamics? Give simple examples to illustrate the symmetries underlying the
conservation of linear and angular momentum.

A system with three degrees of freedom described by coordinates qi,¢qo, g3 has
Lagrangian

L= %(Q% +45+45) — %(Q% +¢ +q3) — a(q2q3 + G301 + @1q2),

where 0 < a < % Show that L is invariant under infinitesimal rotations about the
(1,1,1) axis in g-space, and hence find a constant of motion other than the total energy.
Verify from the equations of motion that it is indeed constant.

11. A particle with position coordinates r moves in a central potential V(r). By
considering the quantity (r x 1) show that the orbit of the particle lies in a fixed plane.
Find all potential functions V' (r) and corresponding functions a(r) for which the

vector
K=1X(rxr)+ar)r

is conserved.

Find also the potentials V' (r) and functions (r) for which the components of the
matrix

are constants of the motion, where r;, 7; (i = 1,2,3) are the components of position
and velocity of the particle along any three independent fixed axes.
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1. Show that if the Hamiltonian is independent of a generalized coordinate ¢qq, then the
conjugate momentum pg is a constant of motion. Such coordinates are called cyclic
coordinates. Give two examples of physical systems that have a cyclic coordinate.

2. Show that in spherical polar coordinates the Hamiltonian of a particle of mass m
moving in a potential V(x) is

o= 2 U P ) + V()

Tom\r T2 T g%y .

Show that ps = constant when 0V/0¢ = 0 and interpret this result physically.
2

Show that [H, K] = 0 where K = p3 + 'pg 5 By expressing K as a function of 0
sin

and ¢ interpret this result physically.

Consider circular motion with angular momentum h in a spherical potential V().
Evaluate pg(6) when the orbit’s plane is inclined by % to the equatorial plane. Show
that pp = 0 when sin# = 4 cos and iterpret this result physically.

3. The bottom spike of an axisymmetric top of mass m lies distance a below the top’s
centre of gravity. Show that when the top is spinning with its spike in contact with a
rough floor, the system’s Hamiltonian is

s (ps—pycosh)® Py

2—Il+ o7, sin? 0 +E+mga0080.

where (6, ¢,1) are Euler angles relative to a vertical k axis and I3 is the principal
moment of inertia about the top’s symmetry axis. Identify two constants of the motion
in addition to H.

Show that the top will precess steadily at fixed inclination to the vertical provided
0 satisfies

H =

(pg — Dy cos0)(pg cos ) — py)
I, sin* 0

0 = mga +

4. Oblate spheroidal coordinates (u,v, @) are related to regular cylindrical polars

(R,z,¢) by
R = Acoshucosv ; z= Asinhusinuv.

Show that in these coordinates momenta of a particle of mass m are

2 .
pu = mA?(cosh” u — cos® v)1,

po = mA%(cosh® u — cos® v)0,
Dy = mA? cosh? u cos® v.
Hence show that the Hamiltonian for motion in a potential ®(u,v) is
2 .2 2
H= Pyt Dy + bo_ + 0.
2mAZ2(cosh®u — cos?v)  2mA? cosh” ucos? v

Show that [H,ps] = 0 and hence that py is a constant of motion. Identify it physically.
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5. A particle of mass m and charge () moves in the equatorial plane of a magnetic
dipole. Given that the dipole has vector potential

Lot sin 0
A = Pz
dmrz ¢
evaluate the Hamiltonian H (p,,pg, T, ¢) of the system.

The particle approaches the dipole from infinity at speed v and impact parameter
b. Show that pys and the particle’s speed are constants of motion.

Show further that for Qu > 0 the distance of closest approach to the dipole is

_ 1)V —a?+b forb>a 2 _ MoQu
D_Q{\/b2+a2—b for b < a where - a T ommu

6. A point charge ¢ is placed at the origin in the magnetic field generated by a spatially
confined current distribution. Given that

E=--1 %

Ameg 13

and B =V x A with V- A =0, show that the field’s momentum

PEeO/Ede3x:qA(O).

Use this result to interpret the formula for the canonical momentum of a charged
particle in an e.m. field. [Hint: write E = —(q/4meq)Vr~! and B = V x A, expand
the vector triple product and integrate each of the resulting terms by parts so as to
exploit in one V- A = 0 and in the other V?r~! = —47§3(r). The tensor form of
Gauss’s theorem states that [d®xV,T = ¢d%5; T no matter how many indices the
tensor T may carry.|

7. For each convex function f(z), i.e. for each f(x) for which f”(x) > 0, define F(x, p)
to be the function of two variables

F(z,p) = zp — f(x).
Show that for each fixed p, F(x,p) has a unique maximum with respect to x when
f'(x) = p. Let this maximum occur at x,. We define the Legendre transform of f to
be

Show that the Legendre transform f(q) of f(p) is f(q) = f(¢). (In other words on
applying the transform twice you recover your original function.)

[Hint: first show that gp — f(p) achieves its maximum w.r.t. p when z, = q.]

8. Show that the generating function of the form S(P, x) which generates the Gallilean
transformation between frames in relative motion at velocity V is

S=P-x+V.(mx—tP).

9. A point transformation is specified by n functions Q;(q) of the old coordinates q.
Show that any point transformation is canonical by evaluating [Q;, Q;], [P, P;], etc.,
where P = 0L/0Q, with L the Lagrangian. [Hint: you may find it useful to prove first

that Q; = (0Q:/9q;)d; and P; = p;(9q;/9Q;).]
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10. Show that for a harmonic oscillator of frequency w the Hamilton-Jacobi equation
reads

ds
(@

Identify a new momentum P which allows S to be written

2
) + m?w?x® = 2mE.

S(P,z) = (0 + 1sin20)P where 6(P,z) = arcsin (1 / %x)
Hence show that the action-angle coordinates of this system may be taken to be

1
p= 2 2 2 2
—me<p +miwz?),

Q@ = arctan(mwzx/p).

(Notice that according to quantum mechanics P/h = (n + 1) takes half-integral val-
ues. The ‘old quantum theory’ was founded on assigning such special values to action
variables divided by h.)

11. Show that when the potential of the Problem 4 is of the form

Ulu) = V(v)

)
cosh? u — cos2 v

O(u,v) = (1)

the Hamilton-Jacobi equation separates. Hence show that in the case py = 0 the other
momenta are related to the coordinates by

Py = :l:A\/Qm[E cosh?u — I — U(u)]
Dy = j:A\/Qm[—E cos?v+ I+ V(v)],

where I is a constant of separation. Express I as a function of position in phase
space. (Potentials of the form () are called Stéckel potentials after P. Stickel, who
demonstrated that ellipsoidal coordinates provide the most general coordinate system
in which one can separate the Hamilton-Jacobi equation of a particle moving in ®(x).)



