The Galaxy

James Binney Oxford University

Components

Disc - Thick (h \simeq 900pc) - Thin (h \simeq 300pc) - Gas (h \simeq 100pc) Bulge/bar Halo Globular-cluster system Dark halo

The disc

Thick & thin Assume double exponential - Thin: $R_d = 2.5 \text{kpc} h = 300 \text{pc}$ Thick R_d=3.6kpc h=900pc Roughly ¼ L is in thick d. - h_{thick} and thus $\rho_{thick}(0)$ very uncertain

Ivezic+ 2008

Thin disc

Measure ρ(R₀,0) with proper motions
ρ(R₀,0)=0.1±0.01M_☉ pc⁻³
Then from z₀, Σ(R₀)=60M_☉ pc⁻²
Counts of stars & gas → Σ₀=49M_☉ pc⁻² (Flynn+06) and Y_I=1.2±0.2M_☉/L_☉
From R_d, M_{thin}=4×10¹⁰M_☉

Speed of Sun

Thin disc gives v_c(R₀)=156 km/s Distance to GC from orbits of S stars around Sgr A^{*}: $R_0 = 8.3 \pm 0.35$ kpc S31 **S19** Proper motion of Sgr A* 0.4 S27 \$12 $v_{c}(R_{0})=250 \text{ km/s}$ 0.2 S54 **S17** \$14 Thin disc gives only 0.4 g **S6 S**4 0.

Rotation curve

- Obs of HI and CO yield "terminal velocities"
- From these get v_c(R) for R<R₀
- More matter needed at all R

V_c at R>R₀

Beyond R₀ in addition to v_{los} you need a distance

 Distance errors to tracers make v_c uncertain

Disc mass from RAVE giants

Local kinematics

Random velocities a function of colour

Aumer & Binney 09

kinematics

- Stars steadily accelerated by grav fields of spiral arms and molecular clouds
- Distribution in V very skew – long tail to low rotation
- In (U,V) plane many streams (moving groups)

Spiral structure

An important phenomenon as heats disc and moves gas inwards

 Poorly understood: traced by OB associations
 Dust

Gas

Thin versus thick disc

 Recently Bovy ++ have been arguing from SDSS that there's just one disc: a superpositon of perfectly isothermal chemically homogeneous discs with scaleheight increasing with α/Fe

 Photometrically selected sample of FG stars within ~2kpc of Sun
 No kinematic bias!

Bovy + 2012

Interstellar Gas

 Systematic effect: circular streaming

The Galactic Bar

 Gas towards the GC moving towards & away at ~150km/s

If we could look down

Near IR Photometry

Galaxy brighter on left of GC

 Individual objects (eg HB stars) also brighter on left

Stanek 1995

Bulge/bar

- A pseudobulge (buckled disc)
- $L \simeq 10^{10} L_{\odot}$
- a~3.5kpc
- a:b:c \simeq 1:0.4:0.3
- Rapid rotator (Dehnen99) $\omega_p \simeq 53$ km/s/kpc=54Gyr⁻¹ R_c=3.4kpc

Launhardt+ 02

Nuclear star-forming disc

The Galactic Centre

70 pc

Wide-Field VLA Radio Image of the Galactic Center $(\lambda = 90 \text{ cm})$ SNR 0.9+0.1

Sgr D SNR

Sgr D HII

Sgr B2 \rightarrow

SNR 359.0-0.9

Radio continuum

Sgr B1-

Arc -

Sgr A

Mouse

SNR 0.3+0.0

Snake

Threads The Cane Background Galaxy

Threads

Sgr C

The Pelican

Coherent structure?

Sgr E

SNR 359.1-0.5

Sgr A and Filaments

Inclined Nuclear Disk

Arcmin = 2.4 pc

The Black Hole

 Weak radio source Sgr A* marks spot
 Orbiting stars reveal its force-field

The Black Hole

- Weak radio source Sgr A* marks spot
- Orbiting stars reveal its force-field
- M=4.3 \pm 0.36 \times 10⁶M_{..}
- $M \propto R_0^{2.2}$

Resulting mass estimates

Gillessen + 09

The stellar halo

- Classically traced by blue horizontal branch stars & RR Lyrae stars
- SDSS traces with MS stars
- Metal-poor: -5.5 < [Fe/H] < -1
- Old
- Smooth component q \simeq 0.8 and $ho \propto$ r^{-2.8}
- M(<40 kpc) = $3.7 \pm 1.2 \times 10^8$ M_{\odot}

Much substructure

halo

disc

lvezic+ 08 (SDSS)

Stellar halo (SDSS)

Stellar streams

Belokurov et al (2007)

Sloan digital sky survey (SDSS

Tidal streams (Pal 5)

Globular clusters

About 160 globular clusters Bimodal metallicity distribution Disk clusters (20%) more metal-rich Share Z distribution with bulge & thick disc

Halo & Disk Clusters

Disk

Dark halo

- $\rho(r) = \frac{\rho_1 a^3}{r(r+a)^2}$ ρ_1 and a correlated to 1-parameter family
 Klypin+ 02 favour a=21.5kpc $\rightarrow v_{max}$ =163km/s and $\rho_{DM}(R_0)$ =0.007M_☉ pc⁻³
 Contributes 15.4M_☉ pc⁻² to $\Sigma_{1.1}$ and 0.31 of g_r needed by v_c(R₀)=220km/s
- Implies $M_{DM} = 3.1 \times 10^{11} M_{\odot}$
- Test prediction for M(>R₀) with satellites
- Problem is poor proper motions
- $M(<50 \text{kpc})=5.4^{+0.2}-3.6 \times 10^{11} \text{M}_{\odot}$