# Introduction to Quantum Chromodynamics 

Lecturer: F Hautmann

## Problem Set 1

## Problem 1

i) Consider the amplitude for propagation of a free particle from point $\mathbf{x}$ to point $\mathbf{y}$ in quantum mechanics,

$$
A(t)=\langle\mathbf{y}| e^{-i H t / \hbar}|\mathbf{x}\rangle
$$

Evaluate the amplitude using $H=\mathbf{p}^{2} /(2 m)$. Discuss the implications of the result in terms of causality.
ii) Illustrate how the above result changes by using the relativistic expression for energy $E=\sqrt{\mathbf{p}^{2} c^{2}+m^{2} c^{4}}$ in the amplitude $A(t)$.
iii) Now consider the theory of a quantum field

$$
\phi(x)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} \sqrt{2 E_{\mathbf{p}}}}\left(a_{\mathbf{p}} e^{-i p x}+a_{\mathbf{p}}^{\dagger} e^{i p x}\right),
$$

where $a_{\mathbf{p}}$ and $a_{\mathbf{p}}^{\dagger}$ are the annihilation and creation operators. Show that the commutator of two fields vanishes at space-like separations,

$$
[\phi(x), \phi(y)]=0, \quad(x-y)^{2}<0 .
$$

Interpret this result in terms of causality and propagation of particles and antiparticles.

## Problem 2

i) Show that Maxwell's equations of electromagnetism may be obtained as Euler-Lagrange equations from the Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-J_{\mu} A^{\mu} .
$$

ii) Write down the gauge transformations of electromagnetism in this formalism, and discuss the meaning of the condition $\partial^{\mu} J_{\mu}=0$.
iii) Consider the Fourier components $\widetilde{A}^{\mu}(k)$ of the electromagnetic field as functions of the wave vector $k$. Decompose $\widetilde{A}^{\mu}(k)$ along a a basis of four polarization vectors, with two of them being transversal to $k$. Use the gauge transformations to show that two of these polarizations are redundant and that only the two transversal polarizations are physical degrees of freedom.

## Problem 3

i) Compute the color factor for the diagram

where solid lines are quarks, wavy lines are gluons and dashed lines are colorless particles. [Answ.: $\left.C_{F} N_{c}=\left(N_{c}^{2}-1\right) / 2.\right]$
ii) How does the annihilation cross section $\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons) scale with the number of colors $N_{c}$ ? And the Drell-Yan lepton pair production cross section? And the branching ratio $B\left(W^{-} \rightarrow e^{-} \bar{\nu}\right)$ ?

## Problem 4

i) Show that the QCD Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+\sum_{f} \bar{\psi}_{f}\left(i D-m_{f}\right) \psi_{f}
$$

is invariant under the nonabelian gauge transformations

$$
\psi \rightarrow G \psi \quad, \quad A_{\mu} \rightarrow G A_{\mu} G^{-1}-\frac{i}{g}\left(\partial_{\mu} G\right) G^{-1}
$$

where $G=\exp \left(i \alpha^{a} T^{a}\right), A_{\mu} \equiv A_{\mu}^{a} T^{a}$, and $T^{a}$ are the color-charge matrices obeying $\left[T^{a}, T^{b}\right]=$ $i f^{a b c} T^{c}$.
ii) Show that for small angles $\alpha^{a} \ll 1$ the gauge transformations on $A_{\mu}^{a}$ have the form

$$
A_{\mu}^{a} \rightarrow A_{\mu}^{a}+\frac{1}{g} \partial_{\mu} \alpha^{a}-f^{a b c} \alpha^{b} A_{\mu}^{c}
$$

iii) Show that the infinitesimal gauge transformations in part ii) can be rewritten compactly in the form

$$
\delta A_{\mu}^{a}=\frac{1}{g} D_{\mu}^{a c} \alpha^{c}
$$

where $D_{\mu}^{a c}$ is the covariant derivative in the adjoint representation, and identify the expression for $D_{\mu}^{a c}$.

## Problem 5

The equation for the gluon propagator $D_{\nu \rho}^{a b}(x)$ is given, upon including the gauge-fixing term $-(2 \xi)^{-1}\left(\partial^{\mu} A_{\mu}^{a}\right)^{2}$ in the Lagrangian, by

$$
\left(\partial^{2} g^{\mu \nu}-\partial^{\mu} \partial^{\nu}+\frac{1}{\xi} \partial^{\mu} \partial^{\nu}\right) D_{\nu \rho}^{a b}(x)=i \delta_{\rho}^{\mu} \delta^{4}(x) \delta^{a b}
$$

By Fourier-transforming this equation and applying Green's function techniques, show that the gluon propagator in momentum space is given for this class of gauge choices by

$$
\widetilde{D}_{\mu \nu}^{a b}(k)=\frac{-i \delta^{a b}}{k^{2}+i \varepsilon}\left[g_{\mu \nu}-(1-\xi) \frac{k_{\mu} k_{\nu}}{k^{2}}\right] .
$$

## Problem 6

Quark-gluon Compton scattering is given, at the lowest order in the QCD coupling $g$, by the graphs

(a)

(b)

(c)
(i) Show that the sum of graphs (a) and (b) dotted into $k^{\nu}$ gives

$$
M_{\mu \nu}^{(a)+(b)} k^{\nu}=i g^{2}\left[T^{a}, T^{b}\right] \bar{u}\left(p^{\prime}\right) \gamma_{\mu} u(p)
$$

(ii) Evaluate the contribution of graph (c) dotted into $k^{\nu}$,

$$
M_{\mu \nu}^{(c)} k^{\nu}
$$

and show that the sum of all graphs gives $M_{\mu \nu} k^{\nu}=0$ provided $\mu$ is restricted to physical polarizations. Contrast this with the abelian case of electrodynamics. Discuss implications of these results in terms of longitudinal polarization states in the photon and gluon cases.

