
1 Parton picture of hard scattering processes

This note discusses scattering processes occurring via strong interactions and involving
momentum transfers Q large compared with the QCD scale ΛQCD ≈ 1 fermi −1. These
are referred to as hard scattering processes. For Q ≫ ΛQCD, αs(Q) ≪ 1, and hadrons can
be thought of as being made of weakly interacting “partons” (quarks and gluons).

In this regime, the key idea will be to separate dynamics at short distances and dynam-
ics at long distances in the scattering process. The precise way in which this separation
is done will differ in different processes. The discussion will treat a few examples, distin-
guishing observables in which the long-distance physics contributes terms to the physical
cross sections that are suppressed by powers of the hard scale Q (e.g., the cross section
for e+e− annihilation into hadrons), and observables in which the long-distance physics
contributes already at the leading power in the hard scale Q (e.g., deep inelastic scattering
and hadron-hadron collisions). The former are discussed in the first section, the latter are
discussed in the second section.

1.1 Infrared-safe processes

In this section we introduce the notion of infrared safety using the example of hadron
production in electron-positron annihilation.

1.1.1 Hadron production in e+e− annihilation

Consider the production of hadrons in electron-positron annihilation at high energy (Fig. 1).
The electron pair annihilates into a vector boson (virtual photon or Z) with momentum
qµ and large Q2 = qµqµ:

√
Q2 ≫ “hadronic scale” ≈ 1 fermi −1 . (1)

At some point in spacetime, the vector boson decays into a quark and an antiquark.
From the uncertainty principle the time of creation of the pair is determined within

δt ∼ 1/
√
Q2 ≪ 1 fermi . (2)

This quark system evolves in time possibly emitting other quarks and gluons (partons).
Over time intervals of the order

∆t ≫ 1/
√
Q2 (3)
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Figure 1: Hadron production from vector boson decay in e+e− annihilation.

the partons convert into hadrons, which are observed in the detectors.

The starting point of our discussion is that the parton process, characterized by the
time-scale (2), is calculable from QCD using perturbation theory, while the hadronization
process, characterized by the time-scale (3), is not, and is regarded for the purpose of this
discussion as “uncalculable”. We rely on the smallness of the coupling in the region (1):

αs(Q) ∼ [β0 ln(Q2/Λ2
QCD)]

−1 , ΛQCD ∼ 1 fermi −1 , (4)

where β0 = (33 − 2Nf )/(12π), with Nf the number of quark flavors. Although the
dynamics of hadronization is not known, we however take it to obey general principles
such as probability conservation and relativity. Then we ask the question: by using these
principles and the part of QCD that we are able to calculate, can we predict the cross
section σ(e+e− → hadrons)? And, even more strongly, could we predict not just the total
cross section but also more detailed features of the hadronic final states?

Separation of short-time and long-time dynamics

We may examine these questions using a heuristic argument. The process of Fig. 1
consists of a short-distance interaction involving the decay of the vector boson into a
parton system and a long-distance interaction converting the parton system into hadrons.
The first step in the argument is to declare that as these two interactions occur at different
time-scales they have no quantum-mechanical interference: the probability for the whole
process can be calculated as a classical product of probabilities for the two subprocesses,

P (e+e− → h) = P (e+e− → qq̄)P (qq̄ → h) , (5)

where h denotes the hadron final state.
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Next we input the completeness of the hadron states. For a given initial state |i〉, the
sum of the transition probabilities |i〉 → |h〉 over all possible hadron states |h〉 equals
unity: ∑

h

P (i → h) = 1 . (6)

Then for the total cross section we have

σtot(e
+e− → h) ≡

∑

h

P (e+e− → h)

= P (e+e− → qq̄)
∑

h

P (qq̄ → h) = P (e+e− → qq̄) . (7)

Here we have applied the condition (6) to the long-distance process qq̄ → h. We are
saying that although we do not know how partons become hadrons, we however know
that they always do.

The formula (7) begins to show a structure of the kind we would like to have: on the
left hand side is a hadronic quantity — that is, measurable; on the right hand side is a
partonic quantity — that is, “calculable”. However, we haven’t quite arrived at what we
wanted yet: indeed, if we tried to calculate the right hand side of Eq. (7) in perturbation
theory, we would find a divergent result. As we will see shortly, the divergence arises from
residual long-time effects. But there is a natural solution for this, which comes about
since we need to account for the nonconservation of particle number in relativistic field
theory. This means that we need to account for all possible multiparticle final states. For
instance, at the first order of perturbation theory we need to add in the contribution of
states qq̄g.

Let us then see what happens. Suppose we computed σ(e+e− → qq̄) in perturbation
theory with a time cut-off t < T . We can think of implementing this, for instance, by
introducing a gluon mass mg, T ∼ m−1

g . The result we find at the first order in the
coupling αs is of the form

σ(e+e− → qq̄) = σ0{1 + αs [−a2 ln
2(T

√
Q2) + a1 ln(T

√
Q2)

+ finite terms for T → ∞ ] +O(α2
s)} , (8)

where σ0 is the pointlike cross section given by the Born approximation, and a1 and a2
are numerical coefficients. Eq. (8) diverges, as advertised above, as we let the cut-off T
go to ∞. If we now calculate the qq̄g contribution with the same method, we find

σ(e+e− → qq̄g) = σ0 αs [a2 ln
2(T

√
Q2)− a1 ln(T

√
Q2)

+ finite terms for T → ∞ ] +O(α2
s) . (9)

The divergent dependence on T , parameterizing the effects of long-time physics, cancels
in the sum of (8) and (9). What does this mean? As T increases, the probability of
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having a qq̄g state increases, while the probability of having a qq̄ state decreases. But
the total cross section is insensitive to this, i.e., to details of the long-time interactions.
It can be shown that this independence of long-time dynamics is not a characteristic of
the first-order calculation only, but it holds true for any order in αs. Thus σtot can be
legitimately evaluated as a systematic expansion in perturbation theory. The result is
known through the third order:

σtot(e
+e− → h) = σ0

[
1 +

αs

π
+ 1.4092

(
αs

π

)2

− 12.805
(
αs

π

)3

+ . . .

]
, (10)

where αs is the strong coupling evaluated at the scale Q.

The insensitivity to long-time dynamics that we have just observed is referred to as
infrared safety. Importantly, this property holds for many other observables besides the
total cross section. We will come back to this.

Renormalization group invariance

Short-time fluctuations are incorporated in the cross section through the dependence
of the coupling on the energy scale. This follows from the renormalization of the theory,

αs(µ) =
αs(µ

′)

1 + β0αs(µ′) ln(µ2/µ′2)
, (11)

with β0 given below Eq. (4). Note the implications of this on the structure of the answer
for σ. We have written Eq. (10) as an expansion in powers of αs = αs(Q). If the scale is
changed from Q to an arbitrary scale µ, at one-loop accuracy the coupling is changed to

αs → αs(µ) =
αs

1 + β0αs ln(µ2/Q2)
= αs − β0α

2
s ln(µ

2/Q2) +O(α3
s) , (12)

and the perturbative expansion for the cross section takes the form

σtot = σ0

{
1 + [c1 + c′1 ln(µ

2/Q2)]αs(µ)

+ [c2 + c′2 ln(µ
2/Q2) + c′′2 ln

2(µ2/Q2)]α2
s(µ) +O(α3

s)
}

, (13)

where the c’s are numerical coefficients. But the invariance of the physical cross section
under changes in the renormalization scale requires that, order by order in αs,

σ(αs(µ), µ/Q) = σ(αs, 1) . (14)

Via Eq. (14), the coefficients of the logarithmic terms in Eq. (13) are uniquely determined
in terms of the non-logarithmic coefficients, given in Eq. (10), and the running of the
coupling (12). For example, to second order Eq. (14) implies c′1 = c′′2 = 0, c′2 = c1β0. This
represents a powerful, simple consequence of renormalization-group invariance. We will
see other applications of this invariance in the next section.
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1.1.2 Final-state observables

If all we could compute in the approach discussed above was the total cross section, the
results would be very limited. The point is that in fact many detailed features of the
hadronic final states are describable through infrared-safe observables.

To distinguish between observables that are infrared safe and observables that aren’t,
one can give simple general criteria. For interactions among partons to occur at large
times and distances, small relative momenta are required. This means that either we
have two partons moving in almost the same direction (collinear configurations, Fig. 2a)
or all components of a parton momentum are small (soft configurations, Fig. 2b). Then an
observable will be infrared-safe if it is left unchanged by a) partons splitting into collinear
partons and b) partons emitting soft gluons.

b)a)

φ << 1

E −> 0

Figure 2: Collinear and soft parton emission.

Criteria for infrared safety

To state this precisely, parameterize the generic observable Σ in terms of n-particle
differential cross sections σn and weight functions W (Σ)

n of the n final-state momenta
p1, . . . , pn, as follows:

Σ =
∑

n

1

n!

∫
[dpi]

dσn

dp1 . . . dpn
W (Σ)

n (p1, . . . , pn) , (15)

where [dpi] denotes the integration over the final-state phase space, and Wn can be taken
to be symmetric functions of their arguments. Then infrared safety for the observable Σ
means that

W
(Σ)
n+1(p1, . . . , λpn, (1− λ)pn) = W (Σ)

n (p1, . . . , pn) , 0 ≤ λ ≤ 1 . (16)

That is, the weight functions W (Σ) are left unchanged if one particle splits into two
collinear particles (0 < λ < 1) or emits a soft particle (λ → 0, 1).
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The case of the total cross section that we have seen before, Σ = σtot, is the caseW = 1.
Another well-known example of an infrared-safe quantity is the correlation between the
energies that flow into two detectors separated by an angle θ, defined by

W =
1

Q2

∑

i,j

EiEjδ(cos θij − cos θ) . (17)

To verify Eq. (16) for the energy-energy correlation, observe that the contribution from a
particle with E → 0 vanishes, and that collinear splitting does not change W , since the
autocorrelation terms give

λ2E2
n + 2λ(1− λ)E2

n + (1− λ)2E2
n = E2

n (18)

and the crossed terms give

λEnEi + (1− λ)EnEi = EnEi . (19)

The best-known illustration of the concept of infrared safety is provided by the physics
of hadronic jets. We consider these next.

Jets

Hadronic jets are, roughly speaking, sprays of particles going in approximately the
same direction. The clustering of particles into what we call a jet can be defined in
a precise manner through algorithms that satisfy the criteria for infrared safety. It is
this property that allows precision phenomenology, including measurements of the QCD
coupling αs, to be done in experiments on jet physics.

The earliest infrared-safe definition of jets is that of Fig. 3. According to this definition,
the hadronic event of Fig. 3 contributes to the jet cross section if, given ε > 0, there exist
two cones of opening angle δ such that the energy Eout going outside the cones is smaller
than a fraction ε of the total energy E.

Let us check explicitly at the leading level that this definition is infrared-safe. To this
end note that the jet cross section receives contribution at order αs by the emission of a
virtual gluon, by the emission of a real gluon with energy < εE, and by the emission of a
real gluon with energy > εE and direction within the cones δ. We now take the divergent
parts — soft (ω → 0) and collinear (θ → 0) — for each of these contributions, and add
them up. We find

σ(jet)(ε, δ) = σ0

{
1 + 2

αs

π
CF

[
−
∫ E

0

dω

ω

∫ π

0

d cos θ

1− cos2 θ
+
∫ εE

0

dω

ω

∫ π

0

d cos θ

1− cos2 θ

+
∫ E

εE

dω

ω
(
∫ δ

0

d cos θ

1− cos2 θ
+
∫ π

π−δ

d cos θ

1− cos2 θ
)

]}
(20)
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δ

E < ε Εout

Figure 3: Jet cones.

The contribution of real gluon emission with energy below εE is cancelled entirely by the
corresponding virtual emission. The real contribution above εE within the cones δ is also
cancelled by the virtuals, leaving

σ(jet)(ε, δ) = σ0

{
1− 2

αs

π
CF

∫ E

εE

dω

ω

∫ π−δ

δ

d cos θ

1− cos2 θ

}
≃ σ0

{
1− 4

αs

π
CF ln ε ln δ

}
,

(21)
which is finite for any finite ε, δ. The logarithmic enhancements for small ε, δ are an
example of soft/collinear effects that call for calculational techniques beyond the fixed
order in αs. We will talk of this in Sec. 2.3.

Current experiments do not rely on the simple definition above for identifying jets but
use more sophisticated procedures based on clustering algorithms. In addition to jet cross
sections, a variety of shape variables describing more detailed features of the events can
also be introduced in an infrared-safe manner. Measurements of hadronic jet rates and
event shapes have provided us with precise determinations of the QCD coupling αs.

1.1.3 Beyond the αs expansion

For sufficiently large Q2 we have been able to relate hadronic observables to partonic
calculations. We now want to look more closely at the arguments that have led us to
this parton-hadron correspondence. The discussion brings us to issues that go beyond the
expansion in αs, and help us parameterize the structure of the corrections to it.

We have assumed that at large Q2 many hadron states are available for partons to
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convert to, and we have used the completeness of the hadron states to get a relation
between parton-level and hadron-level quantities. When Q2 approaches the thresholds
of hadron resonances, though, we don’t expect a perturbative partonic calculation to be
able to describe the complex structure of the hadronic cross section. Nevertheless, it can
be shown that less strong relations apply, which connect integrals of the hadronic cross
section over large energy regions to correlation functions of quark operators calculable at
short distances.

To see how these relations come about, we start with implementing probability con-
servation by applying the optical theorem to the total cross section for e+e− → hadrons
(Fig. 4). This relates σtot to the imaginary part of the correlator of two electromagnetic
currents,

σtot(Q
2) =

4πα

Q2
ImΠ(Q2) , (22)

with
i
∫

d4x eiq·x 〈0|T (jµ(x)jν(0))|0〉 = (qµqν −Q2gµν)Π(Q2) . (23)

Eqs. (22),(23) relate the hadronic cross section to a correlator of quark operators, which
does not contain any explicit dependence on specific hadron states. But we still do not
know how to calculate this correlator, since for large, timelike Q2 the integral (23) receives
contributions from energetic intermediate states with multiple hadrons propagating to
long times and distances.
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Figure 4: Optical theorem for the hadronic cross section.

We circumvent this by appealing to the analyticity properties of Π. Relativistic causal-
ity implies that Π must be an analytic function in the complex Q2 plane, with a branch
cut on the positive axis from the lowest hadronic threshold to infinity. Then we can
write a dispersion relation in the following way. Take a large, negative value of virtuality
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Q2 = −Q2
0, and consider the following integral along a contour encircling −Q2

0:

◦
∫

C

dQ2

2πi

Π(Q2)

(Q2 +Q2
0)

n+1
, n ≥ 1 . (24)

We can first evaluate this integral on a small circle around −Q2
0 using the residues’ the-

orem. The result is proportional to the nth derivative of Π. Next we can deform the
contour as in Fig. 5. The contour at infinity does not contribute for n ≥ 1, and we are
left with the discontinuity of Π across the cut. This is proportional to Im Π and related
to σtot via Eq. (22). By equating the results from the two contour integrals we obtain a
set of relations, or sum rules, between derivatives of Π at −Q2

0 and integrals over energy
of the hadronic cross section:

4π2α
1

n!

dnΠ

d(Q2)n
(−Q2

0) =
∫

∞

thres.
dQ2 Q2

(Q2 +Q2
0)

n+1
σtot(Q

2) . (25)

The integral on the right hand side of Eq. (25) goes from the lowest hadron threshold to
infinity, and the correlator on the left hand side is evaluated at large spacelike Q2 = −Q2

0.
At such Q2 the intermediate states contributing to the integral (23) cannot propagate far
from the interaction points, so that a short-distance calculation is valid.

−Q0
2

Im Q2

Re Q2
thres.

Figure 5: The integration contour in the complex Q2 plane.

The basic method of doing the calculation is by expanding the product of currents
(23) at small distances in a series of local operators,

j(x)j(0) = c(1)(x)1+ c(qq)(x)mq̄q(0) + c(F
2)(x)FµνF

µν(0) + . . . . (26)

Here 1, q̄q, F 2, · · · are gauge-invariant and Lorentz-invariant operators placed at x = 0,
while the perturbatively calculable coefficients c are c-number functions of x, contain-
ing singularities for x → 0. By dimensional counting, c(1)(x) ∼ 1/x6, c(qq)(x) ∼ 1/x2,
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c(F
2)(x) ∼ 1/x2. Further terms in the expansion (26) come from higher-dimensional

operators and are less singular for x → 0.

The expansion (26) tells us about the structure of the corrections to σtot. Fourier-
transforming the expansion term by term and using Eqs. (22),(23) gives

Q2σtot(Q
2) = C(1)(Q2) + C(qq)(Q2)〈0|mq̄q|0〉+ C(F 2)(Q2)〈0|F 2|0〉+ . . . , (27)

where C(1) ∼ (Q2)0, C(qq) ∼ (Q2)−2, C(F 2) ∼ (Q2)−2. Less singular terms in x give
rise to power-suppressed terms in 1/Q2. The first contribution on the right hand side of
Eq. (27) can be identified as the perturbative expansion in powers of αs, that is, powers
of 1/ lnQ2. Possible nonperturbative corrections are given by an expansion in powers
of 1/Q2, and contain vacuum expectation values of gauge-invariant local operators, or
vacuum condensates.

The vacuum condensates are universal nonperturbative parameters, while the coef-
ficients in front of them can be calculated perturbatively for a given observable. Even
though we cannot compute the matrix elements in Eq. (27), from the expansion itself we
learn the order of the power correction. In the example above there is no 1/Q2 correction,
because there are no gauge-invariant operators of dimension 2 in the expansion (26). The
first correction to σtot is of order 1/Q

4.

We conclude this subsection by noting that the method to obtain the dispersion sum
rules (25) illustrates a potential source of uncertainty of the theoretical predictions. The
method involves going to the unphysical Q2 region, corresponding to imaginary energies.
Perturbative calculations are done in this region. The point is that the analytic contin-
uation in the Q2 plane may itself cause a loss of theoretical accuracy. For instance, an
error of order exp(−

√
−Q2) in the perturbative approximation, negligibly small at large

negative Q2, is turned to sin
√
Q2, oscillating and unsuppressed. Note that our theoreti-

cal prediction will be affected by an error not just because of limitations in calculational
capabilities, but because of intrinsic limits on the accuracy of both the αs series and the
condensate series. The possibility of such effects has been discussed, including violations
of parton-hadron duality and possible phenomenological implications.

1.2 Factorization and evolution

In this section we go beyond the notion of infrared safety and treat broader classes of
processes including hadron scattering.

Consider deep-inelastic electron-proton scattering (DIS), depicted in Fig. 6. The pro-
ton has momentum p, the virtual photon exchanged by the electron has momentum q,
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and its space-like virtuality is
qµqµ = −Q2 , (28)

with
√
Q2 ≫ 1 fermi −1 being the hard scale. Let x be the ratio

x =
Q2

2p · q . (29)

e

p

pµ

µq

Figure 6: Deep-inelastic lepton-hadron scattering.

In this process, even though the virtual photon couples to quarks over short times of
the order of 1/

√
Q2 ≪ 1 fermi, the quark wave function has had a long time to develop,

as quarks have existed in the proton since times far in the past: the process is necessarily
sensitive to long-time interactions, and the arguments of the previous section on infrared
safety cannot apply.

1.2.1 Factorization in deep inelastic scattering

Although the presence of the hadron observed in the initial state prevents us from dis-
posing of long-time effects simply by means of a unitarity condition, we can nevertheless
ask whether long-time effects can be separated out and factorized. Considering the phys-
ical cross section σ, as a function of the hard momentum scales of order Q and the soft
momentum scales of order the hadronic mass scale m, we ask whether σ can be expressed
as

σ(Q,m) = C(Q, parton momenta > µ)⊗ f(parton momenta < µ,m) , (30)

that is, as a product (or, in general, a convolution ⊗ whose precise definition is to be
specified) of a factor C that only depends on hard momenta and a factor f that only
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depends on soft momenta, at the price of introducing an auxiliary mass scale µ to define
the separation of hard and soft.

If such a representation exists, this brings several benefits. First, the Q dependence
of the physical observable becomes computable in perturbation theory, since it is entirely
contained in the factor C, which depends on short-distance physics. Second, although
the function f depends on long distances and is thus not computable, its µ dependence
is, however, computable: this is because it has to be equal and opposite to that of the
function C in order for the left hand side of Eq. (30) to be independent of µ. This
invariance of the physical cross section with respect to changes in the scale µ can be
expressed through renormalization group equations. It can be shown that by dimensional
arguments the factor C will depend on µ only through the ratio Q/µ. Then from the
renormalization group analysis of the µ behavior one can learn about the behavior in the
physical scale Q.

Let us consider the scattering of Fig. 6 in a reference frame in which the incoming
proton has very large momentum in the z direction (“infinite-momentum” frame). What
happens is depicted in Fig. 7.

p e

Figure 7: The scattering in the infinite momentum frame.

The proton is Lorentz-contracted in the longitudinal direction. The time it takes
the electron to cross the proton, ∆tscatter, shortens as the proton momentum becomes
large. On the other hand, the proton’s internal interactions are time-dilated. The typical
timescale for parton interactions inside the proton, τparton, becomes larger and larger as
the proton momentum increases. For

∆tscatter ≪ τparton (31)

the electron sees a hadronic state with definite number of partons, each of which is in a
state of definite momentum, characterized by a fraction ξ of the proton’s momentum p.
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For large Q2 the distance traveled by the virtual photon is small,

∆lγ ∼ 1/
√
Q2 ≪ 1 fermi . (32)

So if the density of partons is low enough the photon interacts with only one parton. The
probability of its interacting with n partons is suppressed by a factor (R2

pQ
2)−n, where Rp

is the proton radius, and we regard the process as dominated by single parton scattering.

Now, as the photon-parton scattering does not interfere with the interactions among
partons occurring at time-dilated scales, by an argument similar to that used in Sec. 1
for final-state interactions we may compute the process by combining probabilities rather
than amplitudes. In this situation the cross section is obtainable, up to corrections down
by powers of Q2, from the (hard) cross section σe−i for the scattering of the electron
from parton i, carrying momentum fraction ξ of the proton momentum, times the (soft)
distribution function fi/p of parton i in the proton:

σe−p(
Q2

2p · q ,Q,m) =
∑

i

∫ 1

x
dξ σe−i(

Q2

2ξp · q ,Q, µ) fi/p(ξ, µ,m)

[
1 +O

(
Λ2

QCD

Q2

)]
. (33)

Here the sum over partons and integration over ξ specify the convolution ⊗ of Eq. (30).
As a result of the separation of hard and soft contributions, both factors in Eq. (33) now
contain an additional mass scale µ. Notice here the difference compared to the infrared-
safe e+e− cross section of Sec. 1. From this point of view, µ is a left-over of the process’
sensitivity to long-time interactions.

If we ignore the µ dependence, Eq. (33) can be used at the lowest order of perturbation
theory, and gives scaling of the cross section in 1/Q2, reflecting the pointlike nature of the
constituents. This the original parton model of Bjorken and Feynman. In general, Eq. (33)
is valid to any perturbative order, and small, logarithmic violations of scaling appear
through the µ dependence of fi/p and Q/µ dependence of σe−i. This is the distinctive
feature of the field-theoretic treatment of the scattering in QCD, beyond the original
parton model.

We have introduced µ in Eq. (30) as a momentum cut-off. In more detailed treatments,
it will be equivalently introduced by different methods, such as for instance the dimen-
sional regularization method, better-suited for higher-order perturbative calculations.

As there is no interference between different partons and different ξ, the f are indepen-
dent of the hard scattering (“universal”) and can be characterized as matrix elements of
the fundamental fields of the theory, representing the partons that connect the incoming
hadron with the hard scattering. Denoting by p+ the hadron’s momentum in the lightcone
plus direction, the matrix element for the case of the gluon distribution i = g is

fg/p(ξ, µ) =
1

2πξp+

∫
dy−eiξp

+y−〈p|F̃+j
a (0, 0,0)F̃+j

a (0, y−,0)|p〉 , (34)
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where F̃ is the gluon field strength F multiplied by a path-ordered exponential of the
color potential,

F̃+j
a (y) =

[
P exp

(
−ig

∫
∞

y−
dz− A+

c (y
+, z−,y) tc

)]

ab

F+j
b (y) . (35)

Eq. (34) may be understood starting from the theory canonically quantized on planes
x+ = const. in A+ = 0 gauge. In this gauge the operator in Eq. (34) can be related to
the number operator. In general, though, the definition in Eq. (34) is gauge-invariant: it
is made gauge-invariant by the path-ordered exponential (35). This factor has a physical
interpretation in terms of the recoil color flow, represented as a fast moving color charge
that goes out along a lightlike line in the minus direction, coupling to gluons from the
hadron’s field. The operator product in Eq. (34) gives rise to ultraviolet divergences that
need renormalization. From the point of view of Eq. (34), the dependence on µ in the
f appears precisely through the renormalization scale that has to be introduced to treat
these divergences.

An expression analogous to (34) can be given for quarks:

fq/p(ξ, µ) =
1

4π

∫
dy−eiξp

+y−〈p|q̃(0)γ+q̃(0, y−,0)|p〉 , (36)

where

qi(y) =
[
P exp

(
−ig

∫
∞

y−
dz− A+

c (y
+, z−,y) tc

)]

ij

qj(y) . (37)

The operators in Eqs. (34),(36) are not local. But if we take moments, defined as the
Mellin transform

fN(µ) =
∫ 1

0
dξ ξN−1f(ξ, µ) , (38)

we can verify that these are related to local operators, and establish a connection between
Eq. (33) and an expansion of the kind seen in Sec. 1 for the e+e− cross section, Eq. (27).
More precisely, the moments (38) of the gluon distribution (34) are expressed in terms of
an infinite set of local operators,

Oµ1...µN = F µ1

ν (0)
(
ΠN−1

j=2 D
µj

)
F νµN (0) , (39)

whose dimensions increase with the moment variable N , d = 2 + N . This infinite set
of operators, along with the analogous set for the quark fields, controls the large-Q2

behavior of the cross section at leading power, and represents the operator content of the
convolution in Eq. (33), taken to all perturbative orders. This is the counterpart, for deep
inelastic scattering, of the first term in the right hand side of the expansion (27) for e+e−.
The twist variable τ defined as τ ≡ d − N takes the value τ = 2 for the leading-power

14



operators. Further terms in the local-operator expansion correspond to the contributions
O(1/Q2) in Eq. (33), and contain operators with τ = d−N > 2.

The factorization of the type (33) can be written for any hard-scattering observable
depending on a hard mass scale Q2. For instance, let us parameterize the DIS cross section
σ, based on Lorentz and gauge invariance, in terms of dimensionless structure functions
FT , FL for transversely and longitudinally polarized virtual photons,

dσ

dxdQ2
=

4πα2

xQ4

[
(1− y +

y2

2
)F2(x,Q

2)− y2

2
FL(x,Q

2)

]
, (40)

where F2 is given by the combination

F2 = FL + FT (41)

and

y =
Q2

xs
, (42)

with s the center-of-mass energy. Any of the Fn (n = 2, L) in Eq. (40) obeys the factor-
ization formula

Fn(x,Q) =
∑

i

∫ 1

x
dξ Cni(x/ξ, αs(µ), Q/µ) fi(ξ, µ) +O

(
Λ2

QCD/Q
2
)

, (43)

with f universal parton distributions and C process-dependent coefficient functions, com-
putable in perturbation theory as power series expansions in αs,

Cni(x, αs, Q/µ) =
∑

k

C
(k)
ni (x,Q/µ) αk

s . (44)

The x dependence of Eq. (43) can be diagonalized by taking N -moments for any function
of x as in Eq. (38). Formulas analogous to (43) can be written for a dimensionless cross
section F (x,Q2) = Q2σ.

In practical applications of Eq. (43), setting the factorization scale µ at a value of the
order of the hard scale Q means that potentially large logarithmic corrections in the ratio
Q/µ are automatically taken into account, or “resummed”, rather than appearing in the
perturbative expansions (44) of the hard-scattering coefficient functions at any order.

1.2.2 Evolution equations

The important point is that the invariance of the physical observable F under changes
in µ implies evolution equations for f . Schematically, the structure of the equations is as
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follows. Since the left hand side of Eq. (43) does not depend on µ, we have

d

d lnµ
FN(Q

2) = 0 . (45)

Then f and C must obey the equations

d

d lnµ
ln fN = γN = − d

d lnµ
lnCN , (46)

with γN a function of αs, computable as a perturbation expansion

γN(αs) =
∞∑

k=1

b
(k)
N αk

s . (47)

So although f , which depends on soft momentum scales, is not calculable perturbatively,
its variation with the scale µ is. This result is of great importance, as it allows us to
connect the outcomes of experiments at different scales of momentum transfer. From
Eq. (46) we get

fN(µ) = fN(µ0) exp

(∫ µ

µ0

γN(αs(µ
′))

dµ′

µ′

)
. (48)

The exponential factor in Eq. (48) represents the violation of scaling, governed by the
anomalous dimension γ. Inserting in Eq. (48) the expression (4) for the running coupling
and the αs-dependence (47) of γ, we see that the violation of scaling is logarithmic.
Note that if αs was frozen to a constant or run to a finite value, this violation would be
power-like.

We have written Eqs. (46),(47) in moment space, suppressing parton indices. Trans-
forming back to x space and restoring the parton indices, the evolution equations read

d

d lnµ2
fi(x, µ) =

∑

j

∫ 1

x

dξ

ξ
Pij(αs(µ), x/ξ) fj(ξ, µ) , (49)

where Pij(αs, z) are the generalized Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
splitting functions, related to the anomalous dimensions γij,N(αs) by the Mellin transform

γij,N(αs) ≡
∫ 1

0
dz zN−1 Pij(αs, z) . (50)

It is often useful to also introduce the momentum weighted parton distributions f̃i

f̃i(x, µ
2) = xfi(x, µ

2) . (51)
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These obey the evolution equations

d f̃i(x, µ
2)

d lnµ2
=
∑

j

∫ 1

x
dz Pij(αs(µ

2), z) f̃j(x/z, µ
2) . (52)

The splitting functions Pij are computable in QCD perturbation theory as a power
series expansion in αs:

Pij(αs, z) =
∞∑

n=1

(
αs

2π

)n

P
(n−1)
ij (z) . (53)

They have the following explicit expressions at leading order:

P (0)
gg (z) = 2CA

[(
1

1− z

)

+
− 1 +

1− z

z
+ z(1− z)

]
+
(
11

6
CA − 2

3
TR Nf

)
δ(1− z) ,

P (0)
gqi

(z) = P
(0)
gq̄i (z) = CF

1 + (1− z)2

z
,

P (0)
qig

(z) = P
(0)
q̄ig (z) = TR

[
z2 + (1− z)2

]
, (54)

P (0)
qiqj

(z) = P
(0)
q̄iq̄j(z) = CF

(
1 + z2

1− z

)

+

δij , P
(0)
qiq̄j(z) = P

(0)
q̄iqj(z) = 0 ,

in terms of the SU(Nc) color factors

CA = Nc , CF =
N2

c − 1

2Nc

, Tr (tatb) = δab TR =
1

2
δab . (55)

Flavor structure of the evolution equations

The leading-order splitting functions P
(0)
ab (z) do not depend on the regularization and

factorization scheme. This is because they are directly related to observable violation of
scaling in deep inelastic scattering. On the contrary, splitting functions and anomalous
dimensions beyond leading order do depend on the regularization/factorization scheme.
Nonetheless, due to charge conjugation invariance and SU(Nf ) flavor symmetry of QCD,
they satisfy the following scheme-independent properties

γqig = γq̄ig ≡ γqg , γgqi = γgq̄i ≡ γgq

γqiqj = γq̄iq̄j ≡ γNS
qq δij + γS

qq , γqiq̄j = γq̄iqj ≡ γNS
qq̄ δij + γS

qq̄ . (56)

The symmetry properties (56) imply that the anomalous dimensions matrix γij has
only seven independent components. Correspondingly, three flavor non-singlet (f̃ (V ), f̃ (−)

qi
,
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f̃ (+)
qi

) and two flavor singlet (f̃S, f̃g) parton densities can be introduced so that the evolu-
tion equations (52) are completely diagonalized (in the partonic space) for the non-singlet
sector. One explicitly finds (we drop the overall dependence on N , µ and αs)

d ln f̃ (V )

d lnµ2
= γ(V ) ,

d ln f̃ (−)
qi

d lnµ2
= γ(−) ,

d ln f̃ (+)
qi

d lnµ2
= γ(+) , (57)

where

f̃ (V ) ≡
Nf∑

j=1

(f̃qj − f̃q̄j) , f̃ (±)
qi

≡ f̃qi ± f̃q̄i −
1

Nf

Nf∑

j=1

(f̃qj ± f̃q̄j) , (58)

and the non-singlet anomalous dimensions are given by

γ(V ) = γNS
qq − γNS

qq̄ +Nf (γ
S
qq − γS

qq̄) , γ(±) = γNS
qq ± γNS

qq̄ . (59)

We see from Eq. (54) that all three non-singlet anomalous dimensions are degenerate at
one loop. This degeneracy is partially removed at two loops because γNS

qq̄ 6= 0. However

we still have γ(V )(αs) = γ(−)(αs)+O(α3
s) since γ

S
qq and γS

qq̄ coincide in O(α2
s). The equality

between γS
qq and γS

qq̄ is violated starting from O(α3
s).

The evolution equations are instead still coupled in the singlet sector:

d f̃S
d lnµ2

= [γNS
qq + γNS

qq̄ +Nf (γ
S
qq + γS

qq̄)]f̃S + 2Nf γqgf̃g ,

d f̃g
d lnµ2

= γgqf̃S + γggf̃g , (60)

where the quark singlet density is defined by f̃S =
∑Nf

i=1(f̃qi + f̃q̄i).

1.2.3 Extensions of the parton picture

We have so far considered the case of scattering from a single incoming hadron. But much
of the usefulness and predictive power of the parton picture comes from the fact that it
can be extended to a large variety of different processes.

Hadroproduction

Consider hard production processes in hadron-hadron scattering. The main physical
idea in this case is that owing to the Lorentz contraction partons from the two hadrons
do not overlap before the hard collision, so that their distributions are not modified by
initial-state interactions and stay the same going from deep-inelastic to hadron-hadron
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scattering. Factorization formulas for hard cross sections in collisions of two hadrons A
and B at center-of-mass energy s have the structure (Fig. 8)

σ(s, q2) =
∑

a,b

∫
dξ1dξ2 fa/A(ξ1, µF )fb/B(ξ2, µF )Hab(ξ1ξ2s, q

2, αs(µR), µF ) +O
(
Λ2

QCD/q
2
)

,

(61)
where q2 is the hard scale, H is the hard-scattering function, and the f ’s are the parton
distributions for the two incoming hadrons. The universality of the f ’s expressed by

H

fa

f b

p
A

p
B

q2

s

Figure 8: Hard scattering in hadron-hadron collisions.

Eq. (61) allows one to use the f ’s determined from deep-inelastic data to predict different
processes such as hadron-hadron collisions. Note that in Eq. (61) we have used a notation
that distinguishes between the factorization scale µF at which the parton distributions
are evaluated and the renormalization scale µR in the coupling. In many applications
these scales are identified.

Although the idea behind Eq. (61) is simple, its actual realization is complicated by
the intricacies in using arguments based on the Lorentz contraction in the presence of
gauge degrees of freedom. This makes detailed derivations rather complex.

Fragmentation

The parton picture has further applications in the case of inclusive hard cross sections
that involve the detection of one (or more) hadrons in the final state. In this case factoriza-
tion formulas are given in terms of nonperturbative distributions dh/i(ξ, µ) describing the
fragmentation of parton i into hadron h as a function of the mass scale µ and the fraction
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ξ of the parton momentum carried by the produced hadron. These parton fragmentation
functions d are the final-state analogue of the parton distribution functions, and obey
evolution equations analogous to Eq. (49) in terms of time-like anomalous dimensions γ,

d

d lnµ
dh/i(x, µ) =

∑

j

∫ 1

x

dξ

ξ
γji(x/ξ, αs(µ)) dh/j(ξ, µ) . (62)

The anomalous dimensions for parton fragmentation functions coincide with those for
parton distributions at leading order but differ from them beyond leading order. Like
the parton distributions, the functions dh/i are universal. The same functions appear in
cross sections with observed hadrons in hadron-hadron collisions, deep inelastic scattering,
e+e− annihilation.
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