Introduction to QED and QCD

Problem sheet 5

Problem 1

Consider the one-loop graphs for the fermion-fermion-gauge vertex function in the non-abelian theory:

(a)

(b)

Figure 1: One-loop corrections to fermion-fermion-gauge vertex.
Show that the color factors for graphs (a) and (b) are given by

$$
\begin{gather*}
T^{c} T^{a} T^{b} \delta^{b c}=\left(C_{F}-\frac{1}{2} C_{A}\right) T^{a} \\
T^{b} T^{c} f^{a b c}=\frac{i}{2} C_{A} T^{a}
\end{gather*}
$$

Problem 2

Determine the ultraviolet divergent part of each of the graphs (a) and (b) in Fig. 1, using dimensional regularization with $d=4-2 \varepsilon$ space-time dimensions and working in Feynman gauge:

$$
\begin{gathered}
\operatorname{graph}(\mathrm{a})=\frac{i g^{3}}{(4 \pi)^{2}}\left(C_{F}-\frac{1}{2} C_{A}\right) T^{a} \gamma^{\nu} \frac{1}{\varepsilon}+\ldots \\
\operatorname{graph}(\mathrm{b})=\frac{i g^{3}}{(4 \pi)^{2}} \frac{3}{2} C_{A} T^{a} \gamma^{\nu} \frac{1}{\varepsilon}+\ldots
\end{gathered}
$$

Problem 3

Combining the results for graphs (a) and (b) in the previous question, determine the vertex renormalization constant Z_{1} :

$$
Z_{1}=1-\frac{\alpha_{s}}{4 \pi} \frac{1}{\varepsilon}\left(C_{F}+C_{A}\right) .
$$

Problem 4

Specialize graph (a) in Fig. 1 to the abelian case,

$$
\bar{u}\left(p^{\prime}\right) i e \Gamma^{\nu} u(p)=e^{3} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\bar{u}\left(p^{\prime}\right) \gamma^{\lambda}(\not k+\not q+m) \gamma^{\nu}(\not k+m) \gamma_{\lambda} u(p)}{\left[(k+q)^{2}-m^{2}+i \varepsilon\right]\left[k^{2}-m^{2}+i \varepsilon\right]\left[(p-k)^{2}+i \varepsilon\right]} .
$$

Using relativistic invariance and gauge invariance, show that the vertex function Γ^{ν} can be decomposed as follows:

$$
\Gamma^{\nu}\left(p, p^{\prime}\right)=F_{1}\left(q^{2}\right) \gamma^{\nu}+\frac{i}{m} F_{2}\left(q^{2}\right) \Sigma^{\nu \rho} q_{\rho}
$$

where $\Sigma^{\mu \nu}=(i / 4)\left[\gamma^{\mu}, \gamma^{\nu}\right], q^{\mu}=p^{\mu}-p^{\mu}$, and the scalar functions $F_{1}\left(q^{2}\right)$ and $F_{2}\left(q^{2}\right)$ are the electron's electric and magnetic form factors.

Problem 5

By the method outlined in the lectures one arrives at the following integral representation for $F_{2}(0)$,

$$
F_{2}(0)=-i e^{2} \int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} \int_{0}^{1} d x_{3} 2 \delta\left(x_{1}+x_{2}+x_{3}-1\right) \int \frac{d^{4} \widetilde{k}}{(2 \pi)^{4}} \frac{-4 m^{2} x_{3}\left(1-x_{3}\right)}{\left[\tilde{k}^{2}-m^{2}\left(1-x_{3}\right)^{2}\right]^{3}} .
$$

Show that this integral evaluates to

$$
F_{2}(0)=\frac{\alpha}{2 \pi} .
$$

Hence the one-loop contribution to the electron's anomalous magnetic moment is given by $g-2=2 F_{2}(0)=\alpha / \pi$.

