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Problem sheet 5

Problem 1

Consider the one-loop graphs for the fermion-fermion-gauge vertex function in the non-abelian
theory:
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Figure 1: One-loop corrections to fermion-fermion-gauge vertex.

Show that the color factors for graphs (a) and (b) are given by
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Problem 2

Determine the ultraviolet divergent part of each of the graphs (a) and (b) in Fig. 1, using
dimensional regularization with d = 4 − 2ε space-time dimensions and working in Feynman
gauge:
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Problem 3

Combining the results for graphs (a) and (b) in the previous question, determine the vertex
renormalization constant Z1:
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αs
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Problem 4

Specialize graph (a) in Fig. 1 to the abelian case,

ū(p′) ieΓνu(p) = e3
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.

Using relativistic invariance and gauge invariance, show that the vertex function Γν can be
decomposed as follows:

Γν(p, p′) = F1(q
2) γν +

i

m
F2(q

2) Σνρ qρ ,

where Σµν = (i/4)[γµ, γν ], qµ = p′µ − pµ, and the scalar functions F1(q
2) and F2(q

2) are the
electron’s electric and magnetic form factors.

Problem 5

By the method outlined in the lectures one arrives at the following integral representation for
F2(0),

F2(0) = −ie2
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.

Show that this integral evaluates to

F2(0) =
α

2π
.

Hence the one-loop contribution to the electron’s anomalous magnetic moment is given by
g − 2 = 2F2(0) = α/π.


