Introduction to QED and QCD

Problem sheet 4

Problem 1

Write the amplitude for Compton scattering $e(p)+\gamma(k) \rightarrow e\left(p^{\prime}\right)+\gamma\left(k^{\prime}\right), \mathcal{M}_{f i}=M_{\mu \nu} \varepsilon^{\prime \mu}\left(k^{\prime}\right) \varepsilon^{\nu}(k)$, and verify that it is gauge-invariant.

Problem 2

By performing the polarization sum over the Compton amplitude as described in the lectures one arrives at the unpolarized matrix element square

$$
\overline{\left|\mathcal{M}_{f i}\right|^{2}}=2 e^{4}\left[\frac{p \cdot k}{p \cdot k^{\prime}}+\frac{p \cdot k^{\prime}}{p \cdot k}+2 m^{2}\left(\frac{1}{p \cdot k}-\frac{1}{p \cdot k^{\prime}}\right)+m^{4}\left(\frac{1}{p \cdot k}-\frac{1}{p \cdot k^{\prime}}\right)^{2}\right] .
$$

Evaluate the process in the center-of-mass system (Fig. 1). Show that in the high energy limit $s=(p+k)^{2} \gg m^{2}$ the photon angular distribution is dominated by backward scattering $\theta \approx \pi$ and is given by

$$
\frac{d \sigma}{d \Omega} \simeq \frac{\alpha^{2}}{s(1+\cos \theta)+2 m^{2}} .
$$

Figure 1: Compton scattering in the center-of-mass system.

Problem 3

The production of photon pairs from $e^{+} e^{-}$annihilation is related to Compton scattering via crossing. Obtain the invariant matrix element square for photon pair production from the Compton matrix element above. Work in the center-of-mass system (Fig. 2) and show that the angular distribution of photon pairs in the high energy limit $E \gg m$ is given by

Figure 2: $e^{+} e^{-}$annihilation into photon pairs in the center-of-mass system.

Problem 4

Evaluate Compton scattering of scalar particles (Fig. 3). Consider the laboratory frame in

(a)

(b)

(c)

Figure 3: Compton scattering of scalar particles.
which the scalar particle is initially at rest. Show that the cross section at fixed photon polarizations is given by

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{m^{2}}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left(\varepsilon \cdot \varepsilon^{\prime}\right)^{2}
$$

where m is the particle's mass, ε and ε^{\prime} are the initial and final photon polarizations, and ω and ω^{\prime} are the initial and final photon energies. Determine the unpolarized cross section by evaluating the average over polarizations of $\left(\varepsilon \cdot \varepsilon^{\prime}\right)^{2}$.

