Introduction to QED and QCD

Problem sheet 3

Problem 1

Consider the scattering process in Fig. 1 and show that the initial-state flux factor defined as

$$
\mathcal{J}=4 E_{a} E_{b}\left|v_{a}-v_{b}\right|
$$

is relativistically invariant and equals

$$
\mathcal{J}=4\left|p_{i}^{(c . m .)}\right| \sqrt{s}=4 \sqrt{\left(p_{a} \cdot p_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}}
$$

where p_{a}, p_{b} and m_{a}, m_{b} are the four-momenta and masses of particles a and $b, s=\left(p_{a}+p_{b}\right)^{2}$, and $p_{i}^{(c . m .)}$ is the initial three-momentum in the center of mass frame.

Figure 1: Scattering process $a+b \rightarrow f_{1}+f_{2}+\ldots f_{n}$.

Problem 2

Consider a scattering amplitude of the form $\bar{u} \Gamma v$, given by a generic product Γ of Dirac γ matrices sandwiched between u and v spinors. Show that the sum over all spins of the squared amplitude evaluates to

$$
\sum_{\alpha=1}^{2} \sum_{\beta=1}^{2}\left|\bar{u}_{\alpha}\left(p^{\prime}\right) \Gamma v_{\beta}(p)\right|^{2}=\operatorname{Tr}\left[\Gamma(\not p-m) \gamma^{0} \Gamma^{\dagger} \gamma^{0}\left(\not{ }^{\prime}+m\right)\right] .
$$

Problem 3

Using the result above, show that the invariant matrix element square for the annihilation process $e^{+}\left(k^{\prime}\right) e^{-}(k) \rightarrow \mu^{+}\left(p^{\prime}\right) \mu^{-}(p)$ in Fig. 2, averaged over initial spins and summed over
final spins, is given by

$$
\overline{\left|\mathcal{M}_{f i}\right|^{2}}=\frac{1}{4} \frac{e^{4}}{\left(q^{2}\right)^{2}} \operatorname{Tr}\left[\gamma^{\rho}\left(\not p^{\prime}-M\right) \gamma^{\tau}(\not p+M)\right] \operatorname{Tr}\left[\gamma_{\tau} \not k^{\prime} \gamma_{\rho} \not k\right],
$$

where we take the approximation of massless electrons.

Figure 2: Annihilation of electron pairs into muon pairs.

Problem 4

Consider the center-of-mass reference frame for the process in Fig. 2. Show that the phase space element $d \Phi$ for the two-body final state can be written as

$$
d \Phi=\frac{|\mathbf{p}|}{16 \pi^{2} \sqrt{s}} d \Omega
$$

where $d \Omega=\sin \theta d \theta d \varphi, s=q^{2}$, and $|\mathbf{p}|=(\sqrt{s} / 2) \sqrt{1-4 M^{2} / s}$.

Problem 5

The computation of the traces in the matrix element square $\overline{\left|\mathcal{M}_{f i}\right|^{2}}$ above gives

$$
\overline{\left|\mathcal{M}_{f i}\right|^{2}}=\frac{8 e^{4}}{s^{2}}\left[(p \cdot k)^{2}+\left(p \cdot k^{\prime}\right)^{2}+M^{2} k \cdot k^{\prime}\right] .
$$

Express this result in terms of the center-of-mass scattering angle θ and obtain that the differential cross section $d \sigma / d \Omega$ for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$is given by

$$
\left(\frac{d \sigma}{d \Omega}\right)_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}=\frac{\alpha^{2}}{4 s} \sqrt{1-\frac{4 M^{2}}{s}}\left[1+\frac{4 M^{2}}{s}+\left(1-\frac{4 M^{2}}{s}\right) \cos ^{2} \theta\right]
$$

Problem 6

By integrating the differential cross section $d \sigma / d \Omega$ for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$over angles, obtain that the total cross section is given in the high energy limit $4 M^{2} / s \rightarrow 0$ by

$$
\sigma_{\mathrm{tot}} \simeq \frac{4 \pi \alpha^{2}}{3 s}
$$

