Introduction to QED and QCD

Problem sheet 2

Problem 1

Given the algebra of rotation generators J_{i} and boost generators K_{i},

$$
\left[J_{i}, J_{j}\right]=i \varepsilon_{i j k} J_{k}, \quad\left[K_{i}, K_{j}\right]=-i \varepsilon_{i j k} J_{k}, \quad\left[J_{i}, K_{j}\right]=i \varepsilon_{i j k} K_{k}
$$

show that the hermitian generators

$$
A_{i}=\frac{1}{2}\left(J_{i}+i K_{i}\right), \quad B_{i}=\frac{1}{2}\left(J_{i}-i K_{i}\right)
$$

commute with one another and separately obey the commutation relations of angular momentum

$$
\left[A_{i}, A_{j}\right]=i \varepsilon_{i j k} A_{k}, \quad\left[B_{i}, B_{j}\right]=i \varepsilon_{i j k} B_{k}, \quad\left[A_{i}, B_{j}\right]=0
$$

Problem 2

Let ξ be a Weyl spinor. Show that if ξ transforms in the $\left(\frac{1}{2}, 0\right)$ representation of the group of Lorentz transformations, then $\varepsilon \xi^{*}$, where $\varepsilon=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, transforms in the $\left(0, \frac{1}{2}\right)$ representation. Write down a general expression for a Dirac spinor in terms of two left-handed Weyl spinors.

Problem 3

Verify the orthonormality and completeness relations for the solutions of the Dirac equation,

$$
\bar{u}_{r}(\mathbf{p}) u_{s}(\mathbf{p})=-\bar{v}_{r}(\mathbf{p}) v_{s}(\mathbf{p})=2 m \delta^{r s}, \quad \bar{u}_{r}(\mathbf{p}) v_{s}(\mathbf{p})=\bar{v}_{r}(\mathbf{p}) u_{s}(\mathbf{p})=0
$$

and

$$
\sum_{r=1}^{2} u_{r}(\mathbf{p}) \bar{u}_{r}(\mathbf{p})=(\not p+m), \quad \sum_{r=1}^{2} v_{r}(\mathbf{p}) \bar{v}_{r}(\mathbf{p})=(\not p-m) .
$$

Problem 4

Show that the Dirac hamiltonian H commutes with the total angular momentum operator

$$
[\boldsymbol{L}+\mathbf{S}, H]=0
$$

where \boldsymbol{L} is the orbital angular momentum

$$
L=x \wedge p
$$

and \boldsymbol{S} is the spin operator

$$
\boldsymbol{S}=\frac{1}{2} \boldsymbol{\Sigma}=\frac{1}{2}\left(\begin{array}{cc}
\boldsymbol{\sigma} & 0 \\
0 & \boldsymbol{\sigma}
\end{array}\right) .
$$

Problem 5

Consider plane wave solutions of the Dirac equation

$$
\psi_{+}(x)=\mathcal{N}\binom{\chi_{r}}{\frac{\sigma \cdot \mathbf{p}}{E+m} \chi_{r}} e^{-i p x} \equiv u_{r}(\mathbf{p}) e^{-i p x} \quad, \quad \psi_{-}(x)=\mathcal{N}\binom{\frac{\sigma \cdot \mathbf{p}}{E+m} \chi_{r}}{\chi_{r}} e^{i p x} \equiv v_{r}(\mathbf{p}) e^{i p x}
$$

where $\mathcal{N}=\sqrt{E+m}$, and the spinors χ_{r} for $r=1,2$ are given by

$$
\chi_{1}=\binom{1}{0}, \quad \chi_{2}=\binom{0}{1} .
$$

Take $\mathbf{p}=\left(0,0, p^{z}\right)$. Verify that

$$
\begin{aligned}
S^{z} u_{1} & =\frac{1}{2} u_{1}, \quad S^{z} u_{2}
\end{aligned}=-\frac{1}{2} u_{2}, ~ 子 \quad S^{z} v_{2}=-\frac{1}{2} v_{2},
$$

where S^{z} is the z component of the spin operator.

Problem 6

Use the Dirac equation to derive the identity

$$
\bar{u}\left(p^{\prime}\right) \gamma^{\nu} u(p)=\frac{1}{2 m} \bar{u}\left(p^{\prime}\right)\left(p+p^{\prime}\right)^{\nu} u(p)+\frac{i}{m} \bar{u}\left(p^{\prime}\right) \Sigma^{\nu \rho} q_{\rho} u(p)
$$

where $q=p^{\prime}-p, \Sigma^{\nu \rho}=(i / 4)\left[\gamma^{\nu}, \gamma^{\rho}\right]$.

