Introduction to QED and QCD

Problem sheet 1

Problem 1

Obtain the continuity equation for the Schrödinger equation and for the Klein-Gordon equation.

Problem 2

Suppose introducing a potential V in the Klein-Gordon equation as follows,

$$
\left(i \frac{\partial}{\partial t}-V\right)^{2} \phi=\left(-\nabla^{2}+m^{2}\right) \phi
$$

and consider a wave incident on the potential step in Fig 1. Apply the continuity of ϕ and $\partial \phi / \partial x$ at $x=0$. Show that for $V>m+E_{p}$ positive group velocity leads to negative density, or particle pair creation in the barrier.

Figure 1: Potential step.

Problem 3

Show that the Dirac γ matrices

$$
\gamma^{0}=\beta, \quad \gamma^{k}=\beta \alpha^{k}
$$

obey the hermiticity relation

$$
\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}
$$

Problem 4

Using the anticommutation relations for the Dirac γ matrices, show that in four dimensions

$$
\begin{gathered}
\gamma^{\mu} \gamma_{\mu}=4, \\
\gamma^{\mu} \gamma^{\nu} \gamma_{\mu}=-2 \gamma^{\nu}, \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma_{\mu}=4 g^{\nu \lambda}, \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho} \gamma_{\mu}=-2 \gamma^{\rho} \gamma^{\lambda} \gamma^{\nu} .
\end{gathered}
$$

Determine how the previous identities are modified in dimension d based on the fact that $g^{\mu \nu} g_{\mu \nu}=\delta_{\mu}^{\mu}=d$.

Problem 5

Consider Compton scattering in which a photon with 4-momentum $k^{\mu}=(\omega, \mathbf{k}), \omega=|\mathbf{k}|$, strikes a particle of mass m at rest and is scattered at angle θ with final 4-momentum $k^{\prime \mu}=$ $\left(\omega^{\prime}, \mathbf{k}^{\prime}\right), \omega^{\prime}=\left|\mathbf{k}^{\prime}\right|$ (Fig. 2). Verify that the final photon's energy ω^{\prime} is given by

$$
\omega^{\prime}=\frac{\omega}{1+(\omega / m)(1-\cos \theta)} .
$$

Figure 2: Photon-particle Compton scattering.

