
University of Oxford Hilary Term 2012

Nonabelian Quantum Field Theory

PROBLEM SET B (due March 9)

Problem 1

Consider the nonabelian fermion-fermion-gauge 3-point function at one loop:
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i) Work in dimensional regularization with d = 4− 2ε space-time dimensions. Show that the
ultraviolet-divergent parts of graphs (a) and (b) are given in Feynman gauge by
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ii) Determine the renormalization constant Z1.

Problem 2

Specialize the 3-point function of Problem 1 to the U(1) gauge symmetry case:

ū(p′) ieΓνu(p) = e3
∫ d4k

(2π)4
ū(p′) γλ (/k + /q +m) γν (/k +m) γλ u(p)

[(k + q)2 −m2 + iε] [k2 −m2 + iε] [(p− k)2 + iε]
.

(a) Using relativistic invariance and gauge invariance, show that the vertex function Γν can
be decomposed as follows:

Γν(p, p′) = F1(q
2) γν +

i

2m
F2(q

2) σνρ qρ ,

where σµν = (i/2)[γµ, γν ] and qµ = p′µ − pµ. The functions F1(q
2) and F2(q

2) are scalar
functions representing the fermion’s electric and magnetic form factors.



(b) Obtain a one-loop integral representation for F1(q
2) and for F2(q

2). Show that F2 has
neither ultraviolet nor infrared divergences.
(c) Calculate F2(0), and obtain that the one-loop correction to the electron’s magnetic moment
g − 2 ≡ 2F2(0) is given by

g − 2 =
α

π
.

Problem 3

Consider the cross section σ for e+e− → hadrons as a function of the total momentum square
Q2, the renormalization scale µ and the coupling αs at scale µ:

σ(Q2, αs(µ), µ/Q) = σ0(Q
2)
{

1 + [c1 + c′1 ln(µ
2/Q2)]αs(µ)

+ [c2 + c′2 ln(µ
2/Q2) + c′′2 ln

2(µ2/Q2)]α2

s(µ) +O(α3

s)
}

.

Here the c’s are perturbatively-calculable numerical coefficients.

i) Show that the lowest-order contribution σ0 from the electromagnetic coupling of Nf species
of quarks is given by

σ0(Q
2) =

4 π α2

3 Q2
Nc

Nf
∑

f=1

e2f ,

where Nc = 3, and ef are the quark electric charges. [Work at Q2 much larger than any of
the fermion masses, and set these to zero.]

ii) Discuss the conditions on the higher-order coefficients imposed by renormalization group
invariance of the cross section. Determine the value of c′′2. Determine the relation between c′2
and c1. [Consider a renormalization group transformation µ → Q, αs(µ) → αs(Q). Use the
beta function to relate the values of the coupling at mass scales µ and Q, order-by-order.]

Problem 4

Consider the radiative correction from one-gluon emission in e+e− annihilation to hadrons:
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i) Show that the final-state distribution in momentum fractions xi = (2pi · q)/q2 is given by

1

σ0

dσ

dx1dx2
=
αs

2π
CF

x21 + x22
(1− x1)(1− x2)

.

This is the leading contribution to the cross section for three-jet production.



ii) Compute the order-αs correction to the total cross section σ by combining the above con-
tribution with the one-loop qq̄ contribution. Verify the cancellation of the infrared divergence,
and show that

σ(e+e− → hadrons) = σ0

[

1 +
αs

π
+O(α2

s)
]

.

Problem 5

Consider the axial currents of QCD with two species of quarks,

jµkA = ψ̄γµγ5
σk

2
ψ , jµA = ψ̄γµγ5ψ , ψ =

(

u
d

)

.

a) Write the chiral anomaly group-theory factors, and show that the isosinglet current jµA has
an anomaly from QCD interactions while the isotriplet current jµkA does not. b) By the same
method show that the current jµkA has an anomaly from quarks’ electromagnetic interactions.

Problem 6

A linear sigma model with N = 2 is coupled to a massless Dirac field via the interaction

LI = −gψ(φ1 + iγ5φ2)ψ ,

where φ1 and φ2 are real scalar fields and ψ is the fermion field.

(a) Take global O(2) and chiral symmetry transformations of the fields,
(

φ1

φ2

)

→
(

cosα − sinα
sinα cosα

)(

φ1

φ2

)

, ψ → eiθγ
5

ψ ,

and determine the relation between α and θ such that the theory is globally invariant.

(b) Now let the scalar field doublet acquire nonzero vacuum expectation value,

〈φ〉 =
(

v
0

)

.

Show that the global symmetry of (a) is spontaneously broken; show that the fermion field ψ
acquires a mass, and determine its expression.

Problem 7

The abelian Higgs model can be applied in the nonrelativistic case to the electrodynamics of
a superconductor, interpreting |φ|2 as the density of Cooper pairs of electrons. Take

L = Dµφ
†Dµφ− V (φ)− 1

4
FµνF

µν ,

where Dµ = ∂µ − ieAµ , V (φ) = −µ2φ†φ+
λ

4
(φ†φ)2 .



Work in A0 = 0 gauge, and consider the stationary case. i) Verify that the spontaneous

breaking of the gauge symmetry by 〈φ〉 =
√

2µ2/λ = v/
√
2 induces the current

J = e2v2A ,

with vanishing resistivity. ii) Verify that the magnetic field B = ∇×A obeys the equation

∇2B− e2v2B = 0 ,

implying that magnetic fields decay within distances of order (ev)−1 (Meissner effect).

Problem 8

Consider an SU(2) gauge field coupled to a scalar field φ in the spinor representation of the
gauge group. Let φ acquire a nonzero vacuum expectation value,

〈φ〉 =
(

0

v/
√
2

)

.

a) Show that the theory describes three massive gauge bosons, and determine their mass.
b) Show that the analogous model with φ in the vector representation of SU(2) leads to both
massive and massless gauge bosons.

Problem 9

(a) Write down the functional derivative δG/δα for the Rξ gauge fixing function Ga in spon-
taneously broken gauge theory

Ga = ∂µAa
µ − ξg(T av)jϕj ,

where δα is the gauge variation, Aa
µ is the gauge field, vj are the scalar-field vacuum expectation

values and ϕj are the scalar field shifts ϕj = φj − vj.

(b) Discuss the corresponding mass terms in the ghost lagrangian. Verify that in the abelian
symmetry case ghosts decouple from gauge fields but are still coupled to the scalars.

(c) Decompose the Rξ gauge-field propagator along transverse and longitudinal projectors,
and verify that the longitudinal component propagates with the same mass as the Goldstone
field.


