University of Oxford Hilary Term 2012
Nonabelian Quantum Field Theory

Problem set A (due February 16)

P1) Using the Fourier mode expansion for the Dirac field,
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obtain the expression of the hamiltonian
H = /d3x ) (—i’yjaj + m) Y
in terms of as(k), bs(k), and discuss the role of a and b being anticommuting Grassmann

variables.

P2) Let x be a Weyl spinor field. Show that if x transforms in the (1/2,0) representation of

0 1 ), transforms in the (0, 1/2) representation.

the Lorentz group, then ex*, where ¢ = ( 10

P3) Write Dirac spinor 1 in terms of two left-handed Weyl spinors &, x as

o= (5).

a) Obtain the expression for Dirac mass lagrangian in terms of the two left-handed Weyl
fields. b) For ¢ belonging to representation R of an internal symmetry group, and & and y
belonging to complex conjugate representations R and R, show the invariance of the Dirac
mass lagrangian under the internal symmetry.

P4) Consider the theory of a single left-handed Weyl spinor field x. (a) Write the Majorana
mass and kinetic energy lagrangian, and corresponding equations of motion. (b) Consider
internal symmetry transformations represented by unitary matrices U on x

x = Ux.

Show that the lagrangian mass term in part (a) is invariant under these transformations only
if the field transforms in a real representation of the internal symmetry.

P5) Consider the quadratic part of the action for the gauge field Af, in n - A = 0 gauge:
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Show that the propagator in this gauge is given by
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P6) Consider the BRST transformations
1
0A; = )\Dzbcb . 0 =gty 0t = —ax\gfabccbcc ,

with A Grassmann parameter. Let ) be the BRST charge operator. Evaluate the action of
Q? on the gauge, ghost and matter fields and verify that the charge operator is nilpotent,

Q? =0.

P7) Verify that the generalized Ward identity
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can be rewritten in terms of the transformed generating functional I,
M- [do o (@A)

in the form
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[Use the equations of motion to relate dI'/d¢ to the spacetime derivative of 0I'/du.]

P8) Consider QED Compton scattering of scalar particles:
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(i) Determine the scattering matrix element.

(ii) Show that it is gauge invariant.



(iii) Consider the laboratory frame in which the scalar particle is initially at rest:
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Show that the differential cross section in the solid angle €2 of the final photon momentum, at
fixed photon polarizations e, €, is given by
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where m is the particle’s mass, and w and w’ are the initial and final photon energies.

iv) Determine the unpolarized cross section by evaluating the average over polarizations of
p g g p
(e-&")2.

P9) Consider quark-gluon Compton scattering at lowest order in the QCD coupling g:
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(i) Show that the sum of graphs (a) and (b) dotted into k” gives

MO K = ig? [T, Ta(p)yu(p) -
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(ii) Evaluate the contribution of graph (c) dotted into k¥,
(c) v
Mk,

and show that the sum of all graphs gives M,, k" = 0 provided p is restricted to physical
polarizations. Contrast this with the abelian case of electrodynamics.



