Nonabelian Quantum Field Theory

Problem set A (due February 16)

P1) Using the Fourier mode expansion for the Dirac field,

$$
\psi(x)=\sum_{s} \int \frac{d^{3} k}{(2 \pi)^{3} 2 k^{0}}\left(a_{s}(k) u_{s}(k) e^{-i k x}+b_{s}^{\dagger}(k) v_{s}(k) e^{i k x}\right)
$$

obtain the expression of the hamiltonian

$$
H=\int d^{3} x \bar{\psi}\left(-i \gamma^{j} \partial_{j}+m\right) \psi
$$

in terms of $a_{s}(k), b_{s}(k)$, and discuss the role of a and b being anticommuting Grassmann variables.

P2) Let χ be a Weyl spinor field. Show that if χ transforms in the $(1 / 2,0)$ representation of the Lorentz group, then $\varepsilon \chi^{*}$, where $\varepsilon=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, transforms in the $(0,1 / 2)$ representation.

P3) Write Dirac spinor ψ in terms of two left-handed Weyl spinors ξ, χ as

$$
\psi=\binom{\xi}{-\varepsilon \chi^{*}} .
$$

a) Obtain the expression for Dirac mass lagrangian in terms of the two left-handed Weyl fields. b) For ψ belonging to representation R of an internal symmetry group, and ξ and χ belonging to complex conjugate representations R and \bar{R}, show the invariance of the Dirac mass lagrangian under the internal symmetry.

P4) Consider the theory of a single left-handed Weyl spinor field χ. (a) Write the Majorana mass and kinetic energy lagrangian, and corresponding equations of motion. (b) Consider internal symmetry transformations represented by unitary matrices U on χ

$$
\chi \rightarrow U \chi
$$

Show that the lagrangian mass term in part (a) is invariant under these transformations only if the field transforms in a real representation of the internal symmetry.

P5) Consider the quadratic part of the action for the gauge field A_{μ}^{a} in $n \cdot A=0$ gauge:

$$
S=\frac{1}{2} \int d^{4} x A_{\mu}^{a}(x)\left(\partial^{2} g^{\mu \nu}-\partial^{\mu} \partial^{\nu}-\frac{1}{\xi} n^{\mu} n^{\nu}\right) A_{\nu}^{a}(x) .
$$

Show that the propagator in this gauge is given by

$$
\widetilde{D}_{F \mu \nu}^{(n) a b}(k)=\frac{-i \delta^{a b}}{k^{2}+i \varepsilon}\left[g_{\mu \nu}-\frac{k_{\mu} n_{\nu}+k_{\nu} n_{\mu}}{k \cdot n}+\left(\xi k^{2}+n^{2}\right) \frac{k_{\mu} k_{\nu}}{(k \cdot n)^{2}}\right] .
$$

P6) Consider the BRST transformations

$$
\delta A_{\mu}^{a}=\lambda D_{\mu}^{a b} c^{b}, \quad \delta \psi=i g \lambda c^{a} t^{a} \psi, \quad \delta c^{a}=-\frac{1}{2} \lambda g f^{a b c} c^{b} c^{c}
$$

with λ Grassmann parameter. Let Q be the BRST charge operator. Evaluate the action of Q^{2} on the gauge, ghost and matter fields and verify that the charge operator is nilpotent, $Q^{2}=0$.

P7) Verify that the generalized Ward identity

$$
\int d x\left[\frac{\delta \Gamma}{\delta A_{\mu}^{a}} \frac{\delta \Gamma}{\delta u^{\mu a}}+\frac{\delta \Gamma}{\delta c^{a}} \frac{\delta \Gamma}{\delta v^{a}}-\frac{1}{g \xi} \frac{\delta \Gamma}{\delta \bar{c}^{a}}\left(\partial^{\mu} A_{\mu}^{a}\right)\right]=0
$$

can be rewritten in terms of the transformed generating functional Γ^{\prime},

$$
\Gamma=\Gamma^{\prime}-\int d x \frac{1}{2 \xi}\left(\partial^{\mu} A_{\mu}^{a}\right)^{2}
$$

in the form

$$
\int d x\left[\frac{\delta \Gamma^{\prime}}{\delta u^{\mu a}} \frac{\delta \Gamma^{\prime}}{\delta A_{\mu}^{a}}+\frac{\delta \Gamma^{\prime}}{\delta v^{a}} \frac{\delta \Gamma^{\prime}}{\delta c^{a}}\right]=0
$$

[Use the equations of motion to relate $\delta \Gamma / \delta \bar{c}$ to the spacetime derivative of $\delta \Gamma / \delta u$.]

P8) Consider QED Compton scattering of scalar particles:

(a)

(b)

(c)
(i) Determine the scattering matrix element.
(ii) Show that it is gauge invariant.
(iii) Consider the laboratory frame in which the scalar particle is initially at rest:

Show that the differential cross section in the solid angle Ω of the final photon momentum, at fixed photon polarizations $\varepsilon, \varepsilon^{\prime}$, is given by

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{m^{2}}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left(\varepsilon \cdot \varepsilon^{\prime}\right)^{2}
$$

where m is the particle's mass, and ω and ω^{\prime} are the initial and final photon energies.
(iv) Determine the unpolarized cross section by evaluating the average over polarizations of $\left(\varepsilon \cdot \varepsilon^{\prime}\right)^{2}$.

P9) Consider quark-gluon Compton scattering at lowest order in the QCD coupling g :

(i) Show that the sum of graphs (a) and (b) dotted into k^{ν} gives

$$
M_{\mu \nu}^{(a)+(b)} k^{\nu}=i g^{2}\left[T^{a}, T^{b}\right] \bar{u}\left(p^{\prime}\right) \gamma_{\mu} u(p) .
$$

(ii) Evaluate the contribution of graph (c) dotted into k^{ν},

$$
M_{\mu \nu}^{(c)} k^{\nu},
$$

and show that the sum of all graphs gives $M_{\mu \nu} k^{\nu}=0$ provided μ is restricted to physical polarizations. Contrast this with the abelian case of electrodynamics.

