CP4 REVISION LECTURE ON WAVES

\triangleright The wave equation.
\triangleright Traveling waves. Standing waves.
\triangleright Dispersion. Phase and group velocities.
\triangleright Boundary effects. Reflection and transmission of waves.
8. A string of linear density ρ is under tension T, and lies along the x-axis. Derive the wave equation for small transverse displacements $y(x, t)$ of the string.

A finite string of length L lies between $x=a$ and $x=a+L$, and has its ends fixed with $y=0$. Deduce forms of the initial displacement $y(x, t=0)$ such that subsequently the displacement $y(x, t)$ retains the same shape, but has a different normalisation $f(t)$ i.e

$$
y(x, t)=f(t) \times y(x, t=0)
$$

Find the function $f(t)$ for each of these initial displacements.
For such a string between $x=a$ and $x=a+L$, the initial displacement is

$$
y(x, t=0)=A \sin (2 \pi(x-a) / L) \cos (\pi(x-a) / L)
$$

Initially the string is at rest. Determine the subsequent displacement of the string.
(a)

- uniform linear density ρ

- $T_{1} \cos \theta_{1}=T_{2} \cos \theta_{2}$
for small $\theta, \cos \theta \simeq 1 \Rightarrow T_{1}=T_{2}=T$
- $\rho \delta x \frac{\partial^{2} y}{\partial t^{2}}=T \sin \theta_{2}-T \sin \theta_{1}$
$\sin \theta \simeq \tan \theta \simeq \frac{\partial y}{\partial x} \Longrightarrow \rho \delta x \frac{\partial^{2} y}{\partial t^{2}}=T \underbrace{\left[\left(\frac{\partial y}{\partial x}\right)_{2}-\left(\frac{\partial y}{\partial x}\right)_{1}\right]}_{\left(\partial^{2} y / \partial x^{2}\right) \delta x+\ldots}$
Thus $\quad \rho \frac{\partial^{2} y}{\partial t^{2}}=T \frac{\partial^{2} y}{\partial x^{2}}$
i.e., $\quad \frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}} \quad, \quad v^{2} \equiv \frac{T}{\rho}$
wave equation
- Consider general solution with separated variables:
$y(x, t)=(A \cos k(x-a)+B \sin k(x-a))(C \cos k v t+D \sin k v t), \quad v=\sqrt{T / \rho}$
- Fixed ends : $y(x=a, t)=y(x=a+L, t)=0 \Longrightarrow A=0, k=n \pi / L$
$\Longrightarrow y_{n}(x, t)=\sin [n \pi(x-a) / L]\left(C_{n} \cos (n \pi v t / L)+D_{n} \sin (n \pi v t / L)\right)$ normal modes

$$
\text { general solution : } \quad y(x, t)=\sum_{n} y_{n}(x, t)
$$

- Then, if the initial displacement is of the form $y(x, 0)=C \sin [n \pi(x-a) / L]$ for some integer n, subsequent displacements $y(x, t)$ retain the same shape, but with a different time-dependent normalisation $f(t)=C \cos (n \pi v t / L)+D \sin (n \pi v t / L)$
- Normal modes of the string with fixed ends:
$y_{n}(x, t)=\sin [n \pi(x-a) / L]\left(C_{n} \cos (n \pi v t / L)+D_{n} \sin (n \pi v t / L)\right), \quad v=\sqrt{T / \rho}$
(c)
- String initially at rest $\Rightarrow \partial y / \partial t(x, 0)=0 \Rightarrow D_{n}=0$
- Initial displacement $y(x, 0)=A \sin [2 \pi(x-a) / L] \cos [\pi(x-a) / L]$ can be written as $y(x, 0)=\frac{1}{2} A \sin [3 \pi(x-a) / L]+\frac{1}{2} A \sin [\pi(x-a) / L]$.

Therefore the displacement of the string at subsequent times is given by

$$
y(x, t)=\frac{1}{2} A \sin [3 \pi(x-a) / L] \cos (3 \pi v t / L)+\frac{1}{2} A \sin [\pi(x-a) / L] \cos (\pi v t / L)
$$

6. A uniform string is stretched along the x-axis between fixed endpoints at $x=0$ and $x=D$. If the speed of transverse waves on the string is c, find the wavenumbers and associated frequencies of the standing waves. Write down the precise functional form of $y(x, t)$ for the two lowest frequency modes.

June 2011

- Standing waves with speed c :

$$
y(x, t)=(\alpha \cos k x+\beta \sin k x)(\gamma \cos c k t+\delta \sin c k t), \omega=c k
$$

- Fixed endpoints:

$$
y(x=0, t)=0 \Longrightarrow \alpha(\gamma \cos c k t+\delta \sin c k t)=0 \text { for any } t \Longrightarrow \alpha=0
$$

$$
y(x=D, t)=0 \Longrightarrow \beta \sin k D=0 \Longrightarrow k D=n \pi, \quad n \text { integer }
$$

\Longrightarrow wavenumbers and frequencies: $k_{n}=n \pi / D, \omega_{n}=n \pi c / D$

- General solution : $y(x, t)=\sum_{n} y_{n}(x, t)$ where

$$
y_{n}(x, t)=\sin \frac{n \pi x}{D}\left(\gamma_{n} \cos \frac{n \pi c t}{D}+\delta_{n} \sin \frac{n \pi c t}{D}\right)
$$

- Two lowest modes:

$$
\begin{aligned}
n=1: & y_{1}(x, t)=\sin \frac{\pi x}{D}\left(\gamma_{1} \cos \frac{\pi c t}{D}+\delta_{1} \sin \frac{\pi c t}{D}\right) \\
n=2: & y_{2}(x, t)=\sin \frac{2 \pi x}{D}\left(\gamma_{2} \cos \frac{2 \pi c t}{D}+\delta_{2} \sin \frac{2 \pi c t}{D}\right)
\end{aligned}
$$

7. The properties of a string are altered so that the wave equation describing small amplitude transverse waves on the string becomes

$$
\frac{\partial^{2} y(x, t)}{\partial t^{2}}-c^{2} \frac{\partial^{2} y(x, t)}{\partial x^{2}}=-\mu^{2} y(x, t) .
$$

By utilizing the ansatz, $y(x, t)=\operatorname{Re}[\exp i(\omega t \pm k x)]$, or otherwise, find the relation that the modified wave equation implies between the wavenumber k and angular frequency ω for a string of infinite extent. Compute the phase velocity v_{p} and group velocity v_{g} of the waves as a function of wavenumber, and comment on the relation of these to c. What are the limiting behaviours of both v_{p} and v_{g} as $k \rightarrow 0$ and $k \rightarrow \infty$?
\diamond Substituting the ansatz $e^{i(\omega t \pm k x)}$ into the equation gives

$$
-\omega^{2}+c^{2} k^{2}=-\mu^{2}
$$

$$
\text { i.e., } \quad \omega^{2}=c^{2} k^{2}+\mu^{2}
$$

- Phase velocity : $v_{p}=\frac{\omega}{k}=\frac{\sqrt{c^{2} k^{2}+\mu^{2}}}{k}=c \sqrt{1+\mu^{2} /\left(c^{2} k^{2}\right)}$
- Group velocity : $v_{g}=\frac{\partial \omega}{\partial k}=\frac{c^{2} k}{\sqrt{c^{2} k^{2}+\mu^{2}}}=\frac{c}{\sqrt{1+\mu^{2} /\left(c^{2} k^{2}\right)}}$

$$
\Longrightarrow \quad v_{p} v_{g}=c^{2}
$$

$$
\text { with } \quad v_{p}>c, v_{g}<c
$$

\diamond For $k \rightarrow 0, \quad v_{p} \sim \frac{\mu}{k} \rightarrow \infty ; \quad v_{g} \sim \frac{c^{2} k}{\mu} \rightarrow 0$
\diamond For $k \rightarrow \infty, \quad v_{p} \rightarrow c ; \quad v_{g} \rightarrow c$

September 2009

9. Consider the superposition of two travelling waves of equal amplitude with closely spaced angular frequencies and wave numbers, $\Delta \omega=\omega_{1}-\omega_{2}$ and $\Delta k=k_{1}-k_{2}$, respectively. Show that the resultant wave exhibits beats, and sketch the waveform. Explain the significance of the phase and group velocities, v_{p} and v_{g}, respectively.

Show that for waves travelling through a dispersive medium,

$$
v_{g}=v_{p}-\lambda \frac{d v_{p}}{d \lambda}
$$

where λ is the wavelength in the medium.
Waves propagate through a medium and are characterized by the dispersion relation

$$
v_{p}^{2}=c^{2}+\lambda^{2} \omega_{0}^{2}
$$

where ω_{0} is a constant and c is the speed of light. Show that the product of the phase and group velocities is c^{2}, and comment on the physical significance of the values of v_{p} and v_{g} with respect to c.

A wave travels with $v_{g}=0.9 c$ at $\lambda=350 \mathrm{~nm}$. Calculate the change in group velocity when λ decreases by 0.02 nm .
(a) - Superposition of travelling waves $y_{1}(x, t)$ and $y_{2}(x, t)$: $y_{1}=A \sin [(k+\Delta k / 2) x-(\omega+\Delta \omega / 2) t], \quad y_{2}=A \sin [(k-\Delta k / 2) x-(\omega-\Delta \omega / 2) t]$

- Using $\sin \alpha+\sin \beta=2 \sin [(\alpha+\beta) / 2] \cos [(\alpha-\beta) / 2]$, the resultant wave is

$$
y=y_{1}+y_{2}=2 A \sin (k x-\omega t) \cos [(\Delta k x-\Delta \omega t) / 2]
$$

A 1st factor sin varies with frequency ω and wave number k,
i.e., close to the original waves y_{1} and y_{2}, and corresponding speed $v=\omega / k$ (phase velocity).

- 2nd factor cos varies much more slowly, with frequency $\Delta \omega / 2$ and wave number $\Delta k / 2$
\Rightarrow amplitude modulation, moving at speed $v_{g}=\Delta \omega / \Delta k$ (group velocity).
The modulating envelope encloses a group of short waves.
For $\Delta \omega, \Delta k \rightarrow 0, v_{g}=\frac{d \omega}{d k}$
(b)
- Waves travelling through a dispersive medium:

$$
\begin{aligned}
v_{g}=\frac{d \omega}{d k} & =\frac{d(v k)}{d k}=v+k \frac{d v}{d k}=v+\frac{2 \pi}{\lambda} \frac{d v}{d \lambda} \frac{1}{d k / d \lambda} \\
& =v+\frac{2 \pi}{\lambda} \frac{d v}{d \lambda}\left(-\frac{\lambda^{2}}{2 \pi}\right)=v-\lambda \frac{d v}{d \lambda}
\end{aligned}
$$

(c) - Suppose the dispersion relation $v=v(\lambda)$ is given by

$$
v^{2}=c^{2}+\lambda^{2} \omega_{0}^{2}
$$

Then $2 v d v=2 \lambda d \lambda \omega_{0}^{2}, \quad$ i.e. $\frac{d v}{d \lambda}=\frac{\lambda \omega_{0}^{2}}{v}$

So $v_{g}=v-\lambda \frac{d v}{d \lambda}=v-\frac{\lambda^{2} \omega_{0}^{2}}{v}, \quad$ i.e. $\quad v_{g}=v-\frac{v^{2}-c^{2}}{v}=\frac{c^{2}}{v} \Longrightarrow v_{g} v=c^{2}$

$$
\begin{gathered}
v_{g}=\frac{c^{2}}{v} \Rightarrow \delta v_{g}=-\frac{c^{2}}{v^{2}} \frac{d v}{d \lambda} \delta \lambda=-\frac{c^{2}}{v^{2}} \frac{v_{g}-v}{\lambda} \delta \lambda \\
v_{g}=x c \Rightarrow v=\frac{c}{x} \\
\text { So } \delta v_{g}=-x^{2} c\left(x-\frac{1}{x}\right) \frac{\delta \lambda}{\lambda}=c x\left(1-x^{2}\right) \frac{\delta \lambda}{\lambda} \\
x=0.9, \quad \lambda=350 \mathrm{~nm}, \quad \delta \lambda=0.02 \mathrm{~nm} \Longrightarrow \delta v_{g}=9.7710^{-6} c
\end{gathered}
$$

3. Find all possible solutions to the equation

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0
$$

of the form $u=g(t) f(x)$, where c is a real constant.

$$
u=g(t) f(x) \Longrightarrow f \frac{\partial g}{\partial t}+c g \frac{\partial f}{\partial x}=0
$$

Then $\underbrace{\frac{1}{g} \frac{\partial g}{\partial t}}_{\text {function of } t}=\underbrace{-c \frac{1}{f} \frac{\partial f}{\partial x}}_{\text {function of } x}=K$ constant

$$
\Longrightarrow \quad g=g_{0} e^{K t} \quad, \quad f=f_{0} e^{-K x / c}
$$

So $u=\underbrace{g_{0} f_{0}}_{A} e^{K(t-x / c)}$
6. The propagation of transverse waves on a stretched string is described by the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}
$$

where z is the transverse displacement at point x at time t and c is the speed of propagation.

A string is made of two semi-infinite pieces joined at the origin. For $x<0$, the speed is c_{1}; for $x>0$, the speed is c_{2}. The wave $z=\cos \left(\omega t-k_{1} x\right)$ is incident on the boundary, where $k_{1}=\omega / c_{1}$. Find the amplitudes of the reflected and the transmitted waves.

$$
\begin{gathered}
k_{1}=\omega /{ }^{c_{1}} \quad \frac{{ }^{c} 1}{k_{1}} \frac{{ }^{c}{ }_{2}}{k_{2}=\omega / c_{2}} \\
z_{I}=\operatorname{Re} e^{i\left(\omega t-k_{1} x\right)} ; \quad z_{T}=\operatorname{Re}\left(t e^{i\left(\omega t-k_{2} x\right)}\right) ; \quad z_{R}=\operatorname{Re}\left(r e^{i\left(\omega t+k_{1} x\right)}\right)
\end{gathered}
$$

- continuity of z at $x=0: z_{I}+z_{R}=z_{T} \Longrightarrow 1+r=t$
- continuity of $\partial z / \partial x$ at $x=0 \Longrightarrow-i k_{1}+i k_{1} r=-i k_{2} t$

Hence $-i k_{1}(1-r)=-i k_{2}(1+r) \Longrightarrow r=\frac{k_{1}-k_{2}}{k_{1}+k_{2}} \quad$ reflected amplitude

$$
t=1+r=\frac{2 k_{1}}{k_{1}+k_{2}} \quad \text { transmitted amplitude }
$$

Note

$\boldsymbol{\phi}$ The continuity of z and $\partial z / \partial x$ at the boundary $x=0$
in the previous problem
determines the amplitudes of the reflected and transmitted waves
in terms of the amplitude of the incident wave
as a function of the wave numbers k_{1} and k_{2} :

$$
r=\frac{k_{1}-k_{2}}{k_{1}+k_{2}} \quad ; \quad t=\frac{2 k_{1}}{k_{1}+k_{2}}
$$

© The energy transport across the boundary is described by the coefficients (see next problem)

$$
\begin{array}{rc}
R \equiv \frac{\text { reflected flux }}{\text { incident flux }}=r^{2} & \text { reflection coefficient } \\
T \equiv \frac{\text { transmitted flux }}{\text { incident flux }}=\frac{k_{2}}{k_{1}} t^{2} & \text { transmission coefficient }
\end{array}
$$

The relation $1=R+T$ expresses energy conservation.
9. A long string lies along the x-axis and is under tension T. The displacement of the string from its equilibrium position at x is given by $y(x, t)$. By considering the forces acting on an element of the string show that y satisfies the wave equation.

Two long strings of different densities ρ_{1} and ρ_{2} are joined together at $x=0$. Write down the boundary conditions which must hold at $x=0$ and use these to show that the power reflection and transmission coefficients R and T, respectively, for a wave incident on the boundary are

$$
\begin{align*}
R & =\left(\frac{\sqrt{\rho_{1}}-\sqrt{\rho_{2}}}{\sqrt{\rho_{1}}+\sqrt{\rho_{2}}}\right)^{2}, \\
T & =\frac{4 \sqrt{\rho_{1}} \sqrt{\rho_{2}}}{\left(\sqrt{\rho_{1}}+\sqrt{\rho_{2}}\right)^{2}} . \tag{12}
\end{align*}
$$

What is the phase difference between the incident and reflected waves when ρ_{1} is less than ρ_{2} ?

Sept 2003 Q9 Phys

$$
\begin{aligned}
& \mathrm{v}_{1,2}=\sqrt{\frac{T}{\rho_{1,2}}}=\frac{\omega}{k_{1,2}} \\
& \Rightarrow \quad k_{1,2}=\omega \sqrt{\frac{\rho_{1,2}}{T}}
\end{aligned}
$$

(tension constant in string)

Boundary conditions

$$
\begin{array}{ll}
y_{1}(x=0, t)=y_{2}(x=0, t) & \text { (String continuous) } \\
\frac{\partial \mathrm{y}_{1}}{\partial \mathrm{t}}(x=0, t)=\frac{\partial \mathrm{y}_{2}}{\partial \mathrm{t}}(x=0, t) & \text { (Forces continuous if no mass at join) }
\end{array}
$$

$$
\begin{aligned}
& 1+r=t \\
& k_{1}(1-r)=k_{2} t
\end{aligned} \quad \Rightarrow \quad r=\frac{1-k_{2} / k_{1}}{1+k_{2} / k_{1}}=\frac{1-\sqrt{\rho_{2} / \rho_{1}}}{1+\sqrt{\rho_{2} / \rho_{1}}}, \quad t=\frac{2}{1+k_{2} / k_{1}}=\frac{2}{1+\sqrt{\rho_{2} / \rho_{1}}}
$$

Power transmission

$$
P_{1,2}=\frac{1}{2} T \omega k_{1,2}|A|^{2} \Rightarrow R=\frac{k_{1}}{k_{1}}|r|^{2}=\left(\frac{\sqrt{\rho_{1}}-\sqrt{\rho_{2}}}{\sqrt{\rho_{1}}+\sqrt{\rho_{2}}}\right)^{2} \quad T=\frac{k_{2}}{k_{1}}|t|^{2}=\sqrt{\frac{\rho_{2}}{\rho_{1}}} \frac{4}{\left(1+\sqrt{\rho_{2} / \rho_{1}}\right)^{2}}=\frac{4 \sqrt{\rho_{1}} \sqrt{\rho_{2}}}{\left(\sqrt{\rho_{1}}+\sqrt{\rho_{2}}\right)^{2}}
$$

Sept 2003 Q9 Phys

$$
\begin{aligned}
& \mathrm{v}_{1,2}=\sqrt{\frac{T}{\rho_{1,2}}}=\frac{\omega}{k_{1,2}} \\
& \Rightarrow \quad k_{1,2}=\omega \sqrt{\frac{\rho_{1,2}}{T}}
\end{aligned}
$$

(tension constant in string)

Boundary conditions

$$
\begin{array}{ll}
y_{1}(x=0, t)=y_{2}(x=0, t) & \text { (String continuous) } \\
\frac{\partial \mathrm{y}_{1}}{\partial \mathrm{t}}(x=0, t)=\frac{\partial \mathrm{y}_{2}}{\partial \mathrm{t}}(x=0, t) & \text { (Forces continuous if no mass at join) }
\end{array}
$$

$$
\begin{aligned}
& 1+r=t \\
& k_{1}(1-r)=k_{2} t
\end{aligned} \quad \Longrightarrow \quad r=\frac{1-k_{2} / k_{1}}{1+k_{2} / k_{1}}=\frac{1-\sqrt{\rho_{2} / \rho_{1}}}{1+\sqrt{\rho_{2} / \rho_{1}}}, \quad t=\frac{2}{1+k_{2} / k_{1}}=\frac{2}{1+\sqrt{\rho_{2} / \rho_{1}}}
$$

Phase difference between incident and reflected waves

$$
r=\frac{\sqrt{\rho_{1}}-\sqrt{\rho_{2}}}{\sqrt{\rho_{1}}+\sqrt{\rho_{2}}}=|r| e^{i \phi}, \quad \quad r \text { is negative for } \rho_{1}<\rho_{2} \quad \text { i.e. } \quad \phi=\pi
$$

11. A long uniform string is stretched along the x-axis, has a mass density μ, and is held under tension T. A transverse wave of displacement $y(x, t)$ travels along the string.
(a) The wave equation for transverse waves propagating along the string may be June 2010 written as

$$
\frac{\partial^{2} y(x, t)}{\partial x^{2}}=\frac{\mu}{T} \frac{\partial^{2} y(x, t)}{\partial t^{2}}
$$

Show that a Gaussian pulse propagating along the string, $A \exp \left[-(x+v t)^{2} / x_{0}^{2}\right]$, where A, v, and x_{0} are constants, is a solution of the above differential equation. Sketch the pulse at two different locations corresponding to times t_{1} and $t_{2}>t_{1}$.
(b) Show that the wave energy density along the string is given by

$$
u=\frac{1}{2}\left\{\mu\binom{\partial y}{\partial t}^{2}+T\binom{\partial y}{\partial x}^{2}\right\}
$$

Hence show that for a sinusoidal wave of amplitude A and angular velocity ω travelling along the string, the energy per wavelength is given by

$$
E_{\lambda}=\frac{1}{2} \mu A^{2} \omega^{2}
$$

(c) Assume now that the string extends to infinity in the $-x$ direction, but the other end is terminated by a mass m at $x=0$ which is free to move in the y-direction. Calculate the fraction of the energy reflected when a sinusoidal wave propagates in the $+x$ direction. What happens to the rest of the energy?

$$
\text { (a) } \quad \frac{\partial^{2} y}{\partial x^{2}}=\frac{\mu}{T} \frac{\partial^{2} y}{\partial t^{2}}
$$

\diamond For $y(x, t)=A \exp \left[-(x+v t)^{2} / x_{0}^{2}\right]$ one has

$$
\begin{gathered}
\frac{\partial^{2} y}{\partial x^{2}}=-2 \frac{y}{x_{0}^{2}}+4(x+v t)^{2} \frac{y}{x_{0}^{4}} \\
\text { and }
\end{gathered}
$$

$$
\frac{\partial^{2} y}{\partial t^{2}}=-2 v^{2} \frac{y}{x_{0}^{2}}+4(x+v t)^{2} v^{2} \frac{y}{x_{0}^{4}}=v^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

Thus $y(x, t)$ is solution provided $v^{2}=T / \mu$.

- linear mass density
- tension T
- transverse displacements y

- Kinetic energy of element $\mathrm{dx}: d K=\frac{1}{2} \mu d x\left(\frac{\partial y}{\partial t}\right)^{2}$

$$
\Rightarrow \text { kinetic energy density : } \frac{d K}{d x}=\frac{1}{2} \mu\left(\frac{\partial y}{\partial t}\right)^{2}
$$

- Potential energy of element $\mathrm{dx}: d V=T\left(\sqrt{(d x)^{2}+(d y)^{2}}-d x\right)$

$$
\begin{aligned}
& =T(d x \underbrace{\sqrt{1+(\partial y / \partial x)^{2}}}_{1+(1 / 2)(\partial y / \partial x)^{2}+\ldots}-d x)=\frac{1}{2} T d x\left(\frac{\partial y}{\partial x}\right)^{2} \\
& \Rightarrow \text { potential energy density : } \frac{d V}{d x}=\frac{1}{2} T\left(\frac{\partial y}{\partial x}\right)^{2}
\end{aligned}
$$

Energy density $\quad u=\frac{d K}{d x}+\frac{d V}{d x}=\frac{1}{2} \mu\left(\frac{\partial y}{\partial t}\right)^{2}+\frac{1}{2} T\left(\frac{\partial y}{\partial x}\right)^{2}$

Energy density $\quad u=\frac{d K}{d x}+\frac{d U}{d x}=\frac{1}{2} \mu\left(\frac{\partial y}{\partial t}\right)^{2}+\frac{1}{2} T\left(\frac{\partial y}{\partial x}\right)^{2}$

For $y(x, t)=A \sin (\omega t-k x), v=\omega / k=\sqrt{T / \mu}$, one has

$$
\frac{\partial y}{\partial t}=\omega A \cos (\omega t-k x) \quad, \quad \frac{\partial y}{\partial x}=-k A \cos (\omega t-k x)
$$

- kinetic energy per wavelength λ :

$$
\frac{1}{\lambda} \int_{0}^{\lambda} d x \frac{d K}{d x}=\frac{1}{2 \lambda} \mu \omega^{2} A^{2} \underbrace{\int_{0}^{\lambda} d x \cos ^{2}(\omega t-k x)}_{\lambda / 2}=\frac{1}{4} \mu \omega^{2} A^{2}
$$

- potential energy per wavelength λ :
$\frac{1}{\lambda} \int_{0}^{\lambda} d x \frac{d V}{d x}=\frac{1}{2 \lambda} T k^{2} A^{2} \underbrace{\int_{0}^{\lambda} d x \cos ^{2}(\omega t-k x)}_{\lambda / 2}=\frac{1}{4} T \frac{\omega^{2}}{v^{2}} A^{2}=\frac{1}{4} \mu \omega^{2} A^{2}$
So $\quad E_{\lambda}=\frac{1}{\lambda} \int_{0}^{\lambda} d x\left(\frac{d K}{d x}+\frac{d V}{d x}\right)=\frac{1}{4} \mu \omega^{2} A^{2}+\frac{1}{4} \mu \omega^{2} A^{2}=\frac{1}{2} \mu \omega^{2} A^{2}$
(c)
- Terminating mass m at $x=0$:

$$
\begin{gathered}
m \frac{\partial^{2} y}{\partial t^{2}}=-T \frac{\partial y}{\partial x} \\
y(x, t)=e^{i(\omega t-k x)}+r e^{i(\omega t+k x)} \\
\Longrightarrow \quad-m \omega^{2}(1+r)=i k T(1-r) \\
\text { i.e. } r=\frac{k T-i m \omega^{2}}{k T+i m \omega^{2}} \\
R=|r|^{2}=1
\end{gathered}
$$

all energy reflected with phase change $2 \phi, \tan \phi=m \omega^{2} / T k$

$$
\text { phase: }+1 \text { if } m=0, e^{i \pi}=-1 \text { if } m \rightarrow \infty
$$

