CP4 REVISION LECTURE ON
WAVES

> The wave equation.
> Traveling waves. Standing waves.
> Dispersion. Phase and group velocities.

> Boundary effects. Reflection and transmission of waves.



Sept 2004 Q8 Phys & Phil

8. A string of linear density p is under tension 7', and lies along the z-axis. Derive
the wave equation for small transverse displacements y(z,t) of the string.

A finite string of length L lies between z = a and x = a+ L. and has its ends fixed
with ¥y = 0. Deduce forms of the initial displacement y(x,t = 0) such that subsequently
the displacement y(x,t) retains the same shape, but has a different normalisation f(¢)
e

y(,t) = f(t) x y(x,t =0)
Find the function f(¢) for each of these initial displacements.

For such a string between x = a and x = a + L, the initial displacement is
y(z,t =0) = Asin(2n(x — a)/L) cos(n(x —a)/L)

Initially the string is at rest. Determine the subsequent displacement of the string.

(6]
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(b) X=a x=a+L

e Consider general solution with separated variables:

y(x,t) = (Acosk(x —a) + Bsink(x —a)) (Ccoskvt + Dsinkvt) , v=+/T/p

e Fixedends: y(z=a,t)=ylr=a+L,t)=0 = A=0,k=nn/L
— yp(z,t) = sinjnw(x—a)/L] (C), cos(nmvt/L) + D, sin(nmvt/L)) normal modes
general solution : y(x,t) = Z Yn (2, 1)

e Then, if the initial displacement is of the form y(x,0) = C'sin[nn(x — a)/L] for
some integer n, subsequent displacements y(x,t) retain the same shape, but with a
different time-dependent normalisation f(t) = C'cos(nmvt/L) + D sin(nmvt/L)



e Normal modes of the string with fixed ends:
Yn(x,t) = sinjnm(x — a)/L] (C,, cos(nmvt/L) + Dy sin(nwovt/L)) , v=+/T/p

(c)

e String initially at rest = Oy/0t(z,0)=0 = D, =0

e Initial displacement y(x,0) = Asin[27(z — a)/L] cos|r(x — a)/L)]

1 1
can be written as y(z,0) = §A sin[37(x —a)/L] + §A sin[m(zx —a)/L] .

Therefore the displacement of the string at subsequent times is given by

y(x,t) = %A sin[37(x — a)/L] cos(3mvt/L) + %A sin|w(x — a)/L] cos(mvt/L)



6. A uniform string is stretched along the z-axis between fixed endpoints at x = 0
and z = D. If the speed of transverse waves on the string is ¢, find the wavenumbers
and assoclated frequencies of the standing waves. Write down the precise functional
form of y(z,t) for the two lowest frequency modes. [5]

June 2011



e Standing waves with speed c:
y(x,t) = (acoskx + Bsinkx) (ycosckt + dsinckt) , w = ck
e Fixed endpoints:
y(r =0,t) =0 = « (ycosckt+dsinckt) =0 for any t = a =0

y(r =D,t) =0 = fsinkD=0 — kD =nn , n integer

—> wavenumbers and frequencies: k,, =nn/D, w, =nwc/D

e General solution : y(x,t) = Zyn(x, t) where

. NTI nmct . nmct
yn(iﬁat) :SIHT Yn, COS D + 0,, Sin D

e [wo lowest modes:
mwct mwct

n=1 _: y1(x,t) = si 7;) (’7/1COS——|—5181I13)

27Tct , 27rct)
+ 09 SIn

n=2: Yo (x,t) = 9 COS

. 2
D



7. The properties of a string are altered so that the wave equation describing small
amplitude transverse waves on the string becomes

Pylx, t Fy(z,t
fa(t?_) - Cg% = —p*y(,1).

By utilizing the ansotz, y(x,t) = Re[expi{wtE kz)], or otherwise, find the relation that
the modified wave equation implies between the wavenumber k and angular frequency
w for a string of infinite extent. Compute the phase velocity v, and group velocity v,
of the waves as a function of wavenumber, and comment on the relation of these to e.
What are the limiting behaviours of both v, and v, as k — 0 and & — o0?

June 2011

5]



O Substituting the ansatz e*(“*+%%) into the equation gives
B = R

ie., w?=c%k*+p?

212 1 2
e Phase velocity : v, = % = Ve . Ll c /14 pu2/(c2k?)
Ow 2k c

e Group velocity : v, =

Ok — @k + 2 1+ 12/(c2k?)

_ 2
—> Uply = C

with v, > ¢, vy, <c
L4 c’k

O For k—0, ’UpNE—K)O; Vg ~ ——0
7]

O For k—oo, wv,—c; wvy—c



September 2009

9. Consider the superposition of two travelling waves of equal amplitude with closely
spaced angular frequencies and wave numbers, Aw = w; — wo and Ak = ki — ko,
respectively. Show that the resultant wave exhibits beats, and sketch the waveform.
Explain the significance of the phase and group velocities, v, and vy, respectively.

Show that for waves travelling through a dispersive medium,

dv,,
d\ ’

Ug = Up —

where A\ is the wavelength in the medium.

Waves propagate through a medium and are characterized by the dispersion re-
lation
’Ug =+ )\2w8 :

where wq is a constant and c is the speed of light. Show that the product of the phase
and group velocities is ¢?, and comment on the physical significance of the values of Up
and v, with respect to c.

A wave travels with v, = 0.9c at A = 350nm. Calculate the change in group
velocity when A decreases by 0.02 nm.



(a) e Superposition of travelling waves y;(x,t) and ys(x,1):

y1 = Asin|[(k+ Ak/2)r — (w+ Aw/2)t] , yo = Asin|[(k — Ak/2)z — (w — Aw/2)t]

e Using sina + sin 8 = 2sin|[(a + B)/2] cos|(a — £) /2], the resultant wave is
y = 1y1 + yo = 2Asin(kx — wt) cos[(Ak x — Aw t) /2]

& 1st factor sin varies with frequency w and wave number k£,
I.e., close to the original waves y; and s,
and corresponding speed v = w/k (phase velocity).

& 2nd factor cos varies much more slowly,
with frequency Aw/2 and wave number Ak /2
= amplitude modulation, moving at speed v, = Aw/Ak (group velocity).

The modulating envelope encloses a group of short waves.

_dw

For Aw, Ak — 0, Ug—%



(b) e Waves travelling through a dispersive medium:

o dw  d(vk) _’U—I—k@_v—l—Qﬂ-dU 1
I dk  dk dk A d\dk/d\
_ _|_2_7Td_’U _)\_2 — _)\@
T2 T T
(c) e Suppose the dispersion relation v = v(\) is given by
v 202—|—)\2w3
Then 2v dv = 2\ d\ w? 1.€ d_v_)\_w%
a P T A
d )\2 2 2 2 2
S0 vg:v—)\—vzv— *0 ,  i.e. vg:v—v c_Z —> VU =cC

d\ v v v



r=20.9 ,

c? c? dv c* v, — v
vg:?:>5vg: v2ﬁ(5)\_ U2 \ O\
c
Vg = TC = V= -
O\ O
So v, = —a’c |z — E) 5 = = cx(1 — £C2)T
A=350nm , O0A=0.02nm == dv, =9.77107°



June 2008

3. Find all possible solutions to the equation

ou ou_
ot C(?:U_

of the form u = ¢g(t) f(x), where ¢ is a real constant.

0

dg of
— qlt < 2 =
u=gt)f@) = T teg
Then 1 @ = —c l g = K constant
g Ot f Ox
\ 7 o ~~ _J/
function of t function of x
— g=go et = fy e KT
So u = gOfO GK(t—x/c)

"~~~
A



6. The propagation of transverse waves on a stretched string is described by the wave
equation
&z 1 0%
dz2 2 o2
where z is the transverse displacement at point = at time { and c¢ is the speed of
propagation.

A string is made of two semi-infinite pieces joined at the origin. For z < 0, the
speed is cy; for £ > 0, the speed is ¢3. The wave z = cos(wt — k1) is incident on the
houndary, where k| = w/e;. Find the amplitudes of the reflected and the transmitted
Waves.

June 2008

[6]



ko= w /¢ x=0

21 = Re e!@t=F12) . - — Re (tei(“t_k2x)) . zrp = Re (rei(WtJrklx))

e continuityof zatx =0: 21 +z2p=270 =— 14+r=t
e continuity of 9z/0x at 1 =0 = —iky + ikir = —ikot

ki —k
Hence —iki(1—r1) = —iko(1+7r) = r=——"2 reflected amplitude
k14 ko
2k
t=14r= L transmitted amplitude

k1 + ko



Note

& The continuity of z and 0z/0x at the boundary x =0
in the previous problem
determines the amplitudes of the reflected and transmitted waves
in terms of the amplitude of the incident wave
as a function of the wave numbers k1 and ks:
ki —ky L 2k
ki+ ke ki + ko

r

& The energy transport across the boundary is described by the coefficients
(see next problem)

reflected flux
= — f f — 2 reflection coefficient
incident  flux

transmitted flux ko o .
— = — 1 transmission coefficient
incident  flux k1

T

The relation 1= R+ 1 expresses energy conservation.



Sept 2003 Q9 Phys

9. A long string lies along the z-axis and is under tension 7'. The displacement of
the string from its equilibrium position at x is given by y(x, t). By considering the forces
acting on an element of the string show that y satisfies the wave equation. 5]

Two long strings of different densities p; and py are joined together at = = 0.
Write down the boundary conditions which must hold at = 0 and use these to show
that the power reflection and transmission coefficients R and 1", respectively, for a wave
incident on the boundary are

- (22
NCENCIA
NI

- (Evm) 12

What is the phase difference between the incident and reflected waves when pq is

less than pa? 3]
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_ ilkx—wt) T W

y,=e! - V,= [ —=—

pl - p2 p1,2 kl 2
yr =r e_i(klx+wt) «— R yt =t ei(kzx_a”) pl 2
= k,=0,—

x=0 T
(tension constant in string)

Boundary conditions

Vi (X = OJ) =Y, (x = O,t) (String continuous)

0 0 :
%(x = OJ) = L()c = O,r) (Forces continuous if no mass at join)

ot

I+r=t =k /k 1-+p,/p, P 2

: r = = R [ = =
k(1-r)=k, t I+k, 1k, 1+.p, /p, L+k, [k 1+.[p, /p,

Power transmission

2
})l,zlewkl,2|A|2 = Rzﬁrzz{\/pil_\/gj T=&|t|2: & 4 = 4\/;1\/;22
2 k, P (1+1/p2/p1) (\/p_l+\/p_2)
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yi — ei(klx—a)t) o, v,= T _ ﬂ
Py —————————— P> p1’2 kl 2
yr =r e_i(k1x+wt) — R y[ — t ei(kzx—wt) p
= k,=0,)—>
x=0 ’ T
(tension constant in string)

Boundary conditions

Vi (X = OJ) =Y, (x = O,t) (String continuous)

Di(y=0,)=22
ot ot

(x=0,t) (Forces continuous if no mass at join)

I+r=t -k /k 1-yp,/p, 2 2

: r = = R [ = =
k(1-r)=k, t I+k, 1k, 1+.p, /p, l+k, [k 1+p,/p,
Phase difference between incident and reflected waves

po PP
NN

r is negative forp, < p, ie.|¢=7




11. A long uniform string is stretched along the z-axis, has a mass density u, and is
held under tension T'. A transverse wave of displacement y(x,t) travels along the string.

(a) The wave equation for transverse waves propagating along the string may be

June 2010 written as

0%y(z,t) _ p0y(z,t)
Ox? T Ot?

Show that a Gaussian pulse propagating along the string, A exp [—(m + vt)?/ x%} , where

A, v, and g are constants, is a solution of the above differential equation. Sketch the
pulse at two different locations corresponding to times £; and to > ;.

(b) Show that the wave energy density along the string is given by
1 Iy 2 Iy \ 2
= — T :
¢ 2{“(&) " <8x>

Hence show that for a sinusoidal wave of amplitude A and angular velocity w travelling
along the string, the energy per wavelength is given by

1
E, = §,LLA2w2 :

(c) Assume now that the string extends to infinity in the —x direction, but the
other end is terminated by a mass m at x = 0 which is free to move in the y-direction.
Calculate the fraction of the energy reflected when a sinusoidal wave propagates in the
+x direction. What happens to the rest of the energy?



O For y(z,t) = Aexp [—(z + vt)* /5] one has

0%y Y 2 Y
A W t)22L
Ox? ;C(%—i_ (:C—i—’U) :C%
and
0%y 2 Y 2.2 Y 2 0%y
ﬁ:—QU :E_%—l_l.l(af—i—vt)vx—%:vw

Thus y(x,t) is solution provided v? = T'/p.




® linear mass density [ y

(b) ® tension T /1 a

idxi

® transverse displacements y

2
e Kinetic energy of element dx : dK = % u dx (%)

dK 1 (oy\’
= Kkinetic energy density : — = = u gy
x 2 ot

e Potential energy of element dx : dV =T (\/(alazz)2 + (dy)? — da:)

2
=T |dx /1+ (0y/0x)? — dx :%Td:c (%)

1+(1/2)(9y/0x)2 +...

2 2
Energy density u = dK + v = L L @ + 1 T @
dx dx 2 2



L dK dU 1 (oy\? 1. 9y’
Energy density u = dx * de ~ 2 H (§> +§ ! (%>

O For y(z,t) = Asin(wt — kx), v =w/k = /T /i, one has

Oy _ Oy _ _ _
pri wA cos(wt — kx) | o kA cos(wt — kx)

e kinetic energy per wavelength A :

A A
%/O dxcé_[;:%MW2A2/0 dx cos2(wt—kx):1 pw’ A°

N\ 7
N~

X/2

e potential energy per wavelength A :

A A 2
%/ dach: 1 Tk2A2/ d:vcos2(wt—kaz):1Tw—A2:1,uw2A2
0 0

So

dx 2\ 4 V2 4

N\ 7
Ve

A/2

X
E/\:l/ dx (dK+dV):i,uwzfﬁ—#l,uwQAzzé,uwQAz
0

A dx dx



(c)

e Terminating mass m at x = 0:

0%y Ay
ZJ__pZd
m@tQ ox

y(z,t) = ! @Wt=ke) 4 peilwithe)

— —mw?(1+7r)=ikT(1—-r)

, kT — imw?
ie. r=
kT + imw?
R=|r"=1

all energy reflected with phase change 2¢, tan ¢ = mw?/Tk
phase: + 1ifm =0, ™ = —-1if m — o0



