
CP4 REVISION LECTURE ON

WAVES

⊲ The wave equation.

⊲ Traveling waves. Standing waves.

⊲ Dispersion. Phase and group velocities.

⊲ Boundary effects. Reflection and transmission of waves.
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(a)

small displacements  y

θ
2

θ

x

1

T2

T
1

yuniform linear density ρ

• T1 cos θ1 = T2 cos θ2
for small θ, cos θ ≃ 1 ⇒ T1 = T2 = T

• ρ δx
∂2y

∂t2
= T sin θ2 − T sin θ1

sin θ ≃ tan θ ≃
∂y

∂x
=⇒ ρ δx

∂2y

∂t2
= T

[

(
∂y

∂x
)2 − (

∂y

∂x
)1

]

︸ ︷︷ ︸

(∂2y/∂x2)δx+...

Thus ρ
∂2y

∂t2
= T

∂2y

∂x2

i.e. ,
∂2y

∂x2
=

1

v2
∂2y

∂t2
, v2 ≡

T

ρ
wave equation



(b) x=a x=a +L

• Consider general solution with separated variables:

y(x, t) = (A cos k(x− a) +B sin k(x− a)) (C cos kvt+D sin kvt) , v =
√

T/ρ

• Fixed ends : y(x = a, t) = y(x = a+ L, t) = 0 =⇒ A = 0 , k = nπ/L

=⇒ yn(x, t) = sin[nπ(x−a)/L] (Cn cos(nπvt/L) +Dn sin(nπvt/L)) normal modes

general solution : y(x, t) =
∑

n

yn(x, t)

• Then, if the initial displacement is of the form y(x, 0) = C sin[nπ(x− a)/L] for

some integer n, subsequent displacements y(x, t) retain the same shape, but with a

different time-dependent normalisation f(t) = C cos(nπvt/L) +D sin(nπvt/L)



• Normal modes of the string with fixed ends:

yn(x, t) = sin[nπ(x− a)/L] (Cn cos(nπvt/L) +Dn sin(nπvt/L)) , v =
√

T/ρ

(c)

• String initially at rest ⇒ ∂y/∂t(x, 0) = 0 ⇒ Dn = 0

• Initial displacement y(x, 0) = A sin[2π(x− a)/L] cos[π(x− a)/L]

can be written as y(x, 0) =
1

2
A sin[3π(x− a)/L] +

1

2
A sin[π(x− a)/L] .

Therefore the displacement of the string at subsequent times is given by

y(x, t) =
1

2
A sin[3π(x− a)/L] cos(3πvt/L) +

1

2
A sin[π(x− a)/L] cos(πvt/L)
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• Standing waves with speed c:

y(x, t) = (α cos kx+ β sin kx) (γ cos ckt+ δ sin ckt) , ω = ck

• Fixed endpoints:

y(x = 0, t) = 0 =⇒ α (γ cos ckt+ δ sin ckt) = 0 for any t =⇒ α = 0

y(x = D, t) = 0 =⇒ β sin kD = 0 =⇒ kD = nπ , n integer

=⇒ wavenumbers and frequencies: kn = nπ/D , ωn = nπc/D

• General solution : y(x, t) =
∑

n

yn(x, t) where

yn(x, t) = sin
nπx

D

(

γn cos
nπct

D
+ δn sin

nπct

D

)

• Two lowest modes:

n = 1 : y1(x, t) = sin
πx

D

(

γ1 cos
πct

D
+ δ1 sin

πct

D

)

n = 2 : y2(x, t) = sin
2πx

D

(

γ2 cos
2πct

D
+ δ2 sin

2πct

D

)
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♦ Substituting the ansatz ei(ωt±kx) into the equation gives

−ω2 + c2k2 = −µ2

i.e., ω2 = c2k2 + µ2

• Phase velocity : vp =
ω

k
=

√

c2k2 + µ2

k
= c

√

1 + µ2/(c2k2)

• Group velocity : vg =
∂ω

∂k
=

c2k
√

c2k2 + µ2
=

c
√

1 + µ2/(c2k2)

=⇒ vpvg = c2

with vp > c , vg < c

♦ For k→0 , vp ∼
µ

k
→∞ ; vg ∼

c2k

µ
→0

♦ For k→∞ , vp→c ; vg→c



September 2009

9. Consider the superposition of two travelling waves of equal amplitude with closely
spaced angular frequencies and wave numbers, ∆ω = ω1 − ω2 and ∆k = k1 − k2,
respectively. Show that the resultant wave exhibits beats, and sketch the waveform.
Explain the significance of the phase and group velocities, vp and vg, respectively. [6]

Show that for waves travelling through a dispersive medium,

vg = vp − λ
dvp

dλ
,

where λ is the wavelength in the medium. [6]

Waves propagate through a medium and are characterized by the dispersion re-
lation

v2

p
= c2 + λ

2
ω

2

0
,

where ω0 is a constant and c is the speed of light. Show that the product of the phase
and group velocities is c2, and comment on the physical significance of the values of vp

and vg with respect to c.

A wave travels with vg = 0.9 c at λ = 350 nm. Calculate the change in group
velocity when λ decreases by 0.02 nm. [8]



(a) • Superposition of travelling waves y1(x, t) and y2(x, t):

y1 = A sin[(k+∆k/2)x− (ω+∆ω/2)t] , y2 = A sin[(k−∆k/2)x− (ω−∆ω/2)t]

• Using sinα+ sinβ = 2 sin[(α+ β)/2] cos[(α− β)/2], the resultant wave is

y = y1 + y2 = 2A sin(kx− ωt) cos[(∆k x−∆ω t)/2]

♠ 1st factor sin varies with frequency ω and wave number k,

i.e., close to the original waves y1 and y2,

and corresponding speed v = ω/k (phase velocity).

♠ 2nd factor cos varies much more slowly,

with frequency ∆ω/2 and wave number ∆k/2

⇒ amplitude modulation, moving at speed vg = ∆ω/∆k (group velocity).

The modulating envelope encloses a group of short waves.

For ∆ω , ∆k → 0 , vg =
dω

dk



(b) • Waves travelling through a dispersive medium:

vg =
dω

dk
=

d(vk)

dk
= v + k

dv

dk
= v +

2π

λ

dv

dλ

1

dk/dλ

= v +
2π

λ

dv

dλ

(

−
λ2

2π

)

= v − λ
dv

dλ

(c) • Suppose the dispersion relation v = v(λ) is given by

v2 = c2 + λ2ω2
0

Then 2v dv = 2λ dλ ω2
0 , i.e.

dv

dλ
=

λω2
0

v

So vg = v − λ
dv

dλ
= v −

λ2ω2
0

v
, i.e. vg = v −

v2 − c2

v
=

c2

v
=⇒ vgv = c2



vg =
c2

v
⇒ δvg = −

c2

v2
dv

dλ
δλ = −

c2

v2
vg − v

λ
δλ

vg = xc ⇒ v =
c

x

So δvg = −x2c

(

x−
1

x

)
δλ

λ
= cx(1− x2)

δλ

λ

x = 0.9 , λ = 350nm , δλ = 0.02nm =⇒ δvg = 9.77 10−6 c
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3. Find all possible solutions to the equation

∂u

∂t
+ c

∂u

∂x
= 0

of the form u = g(t)f(x), where c is a real constant.

u = g(t)f(x) =⇒ f
∂g

∂t
+ c g

∂f

∂x
= 0

Then
1

g

∂g

∂t
︸ ︷︷ ︸

function of t

= −c
1

f

∂f

∂x
︸ ︷︷ ︸

function of x

= K constant

=⇒ g = g0 eKt , f = f0 e−Kx/c

So u = g0f0
︸︷︷︸

A

eK(t−x/c)
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2
x=0

c
2

c
1

k
1

= /  c
1

ω

k = ω /  c
2

zI = Re ei(ωt−k1x) ; zT = Re
(

tei(ωt−k2x)
)

; zR = Re
(

rei(ωt+k1x)
)

• continuity of z at x = 0: zI + zR = zT =⇒ 1 + r = t

• continuity of ∂z/∂x at x = 0 =⇒ −ik1 + ik1r = −ik2t

Hence − ik1(1− r) = −ik2(1 + r) =⇒ r =
k1 − k2
k1 + k2

reflected amplitude

t = 1 + r =
2k1

k1 + k2
transmitted amplitude



Note

♠ The continuity of z and ∂z/∂x at the boundary x = 0

in the previous problem

determines the amplitudes of the reflected and transmitted waves

in terms of the amplitude of the incident wave

as a function of the wave numbers k1 and k2:

r =
k1 − k2
k1 + k2

; t =
2k1

k1 + k2

♠ The energy transport across the boundary is described by the coefficients

(see next problem)

R ≡
reflected flux

incident flux
= r2 reflection coefficient

T ≡
transmitted flux

incident flux
=

k2
k1

t2 transmission coefficient

The relation 1 = R+ T expresses energy conservation.
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y1 x = 0,t( ) = y2 x = 0,t( ) (String continuous)

!y1

!t
x = 0,t( ) =

!y2

!t
x = 0,t( ) (Forces continuous if no mass at join)

yi = e
i(k1x!" t )

yr = r e
! i(k1x+" t ) y

t
= t e

i(k2 x!" t )

!
1

!
2

x = 0

v
1,2
=

T

!
1,2

=
"

k
1,2

! k! ,2 ="
#
1,2

T

1+ r = t

k
1
1! r( ) = k

2
t

! r =
1! k

2
/ k

1

1+ k
2
/ k

1

=
1! "

2
/ "

1

1+ "
2
/ "

1

, t =
2

1+ k
2
/ k

1

=
2

1+ "
2
/ "

1

9$"2.702%602.$42$%72%.$572:;%%

+0<"5%$542.=7..702%

P
1,2

=
1

2
T!k

1,2
A
2 " R =

k
1

k
1

r
2
=

#
1
$ #

2

#
1
+ #

2

%

&
'

(

)
*

2

T =
k
2

k
1

t
2
=

#
2

#
1

4

1+ #
2
/ #

1( )
2
=

4 #
1

#
2

#
1
+ #

2( )
2
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y1 x = 0,t( ) = y2 x = 0,t( ) (String continuous)

!y1

!t
x = 0,t( ) =

!y2

!t
x = 0,t( ) (Forces continuous if no mass at join)

yi = e
i(k1x!" t )

yr = r e
! i(k1x+" t ) y

t
= t e

i(k2 x!" t )

!
1

!
2

x = 0

v
1,2
=

T

!
1,2

=
"

k
1,2

! k� ,2 ="
#
1,2

T

1+ r = t

k
1
1! r( ) = k

2
t

! r =
1! k

2
/ k

1

1+ k
2
/ k

1

=
1! "

2
/ "

1

1+ "
2
/ "

1

, t =
2

1+ k
2
/ k

1

=
2

1+ "
2
/ "

1

9$"2.702%602.$42$%72%.$572:;%%

+,4."%37<"5"26"%="$>""2%72673"2$%423%5"?"6$"3%>4@".%

r � !
1
" !

2

!� + !
2

= r e
i#
, r  is negative for !1 < !2 i.e. " = #
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11. A long uniform string is stretched along the x-axis, has a mass density µ, and is
held under tension T . A transverse wave of displacement y(x, t) travels along the string.

(a) The wave equation for transverse waves propagating along the string may be
written as

∂2y(x, t)

∂x2
=

µ

T

∂2y(x, t)

∂t2
.

Show that a Gaussian pulse propagating along the string, A exp
[

−(x+ vt)2/x20

]

, where

A, v, and x0 are constants, is a solution of the above differential equation. Sketch the
pulse at two different locations corresponding to times t1 and t2 > t1. [6]

(b) Show that the wave energy density along the string is given by

u =
1

2

{

µ

(

∂y

∂t

)2

+ T

(

∂y

∂x

)2
}

.

[5]

Hence show that for a sinusoidal wave of amplitude A and angular velocity ω travelling
along the string, the energy per wavelength is given by

Eλ =
1

2
µA2

ω
2 .

[5]

(c) Assume now that the string extends to infinity in the −x direction, but the
other end is terminated by a mass m at x = 0 which is free to move in the y-direction.
Calculate the fraction of the energy reflected when a sinusoidal wave propagates in the
+x direction. What happens to the rest of the energy? [4]



(a)
∂2y

∂x2
=

µ

T

∂2y

∂t2

♦ For y(x, t) = A exp
[
−(x+ vt)2/x2

0

]
one has

∂2y

∂x2
= −2

y

x2
0

+ 4(x+ vt)2
y

x4
0

and

∂2y

∂t2
= −2v2

y

x2
0

+ 4(x+ vt)2v2
y

x4
0

= v2
∂2y

∂x2
.

Thus y(x, t) is solution provided v2 = T/µ.

)

y

x

tt 12 t 1>

v (t 2 − t1



(b) dy

x

ylinear mass density µ

tension T

transverse displacements  y

dx

• Kinetic energy of element dx : dK =
1

2
µ dx

(
∂y

∂t

)2

⇒ kinetic energy density :
dK

dx
=

1

2
µ

(
∂y

∂t

)2

• Potential energy of element dx : dV = T
(√

(dx)2 + (dy)2 − dx
)

= T




dx

√

1 + (∂y/∂x)2
︸ ︷︷ ︸

1+(1/2)(∂y/∂x)2+...

− dx




 =

1

2
T dx

(
∂y

∂x

)2

⇒ potential energy density :
dV

dx
=

1

2
T

(
∂y

∂x

)2

Energy density u =
dK

dx
+

dV

dx
=

1

2
µ

(
∂y

∂t

)2

+
1

2
T

(
∂y

∂x

)2



Energy density u =
dK

dx
+

dU

dx
=

1

2
µ

(
∂y

∂t

)2

+
1

2
T

(
∂y

∂x

)2

♦ For y(x, t) = A sin(ωt− kx), v = ω/k =
√

T/µ, one has

∂y

∂t
= ωA cos(ωt− kx) ,

∂y

∂x
= −kA cos(ωt− kx)

• kinetic energy per wavelength λ :

1

λ

∫ λ

0

dx
dK

dx
=

1

2λ
µ ω2 A2

∫ λ

0

dx cos2(ωt− kx)

︸ ︷︷ ︸

λ/2

=
1

4
µ ω2 A2

• potential energy per wavelength λ :

1

λ

∫ λ

0

dx
dV

dx
=

1

2λ
T k2 A2

∫ λ

0

dx cos2(ωt− kx)

︸ ︷︷ ︸

λ/2

=
1

4
T

ω2

v2
A2 =

1

4
µ ω2 A2

So Eλ =
1

λ

∫ λ

0

dx

(
dK

dx
+

dV

dx

)

=
1

4
µ ω2 A2 +

1

4
µ ω2 A2 =

1

2
µ ω2 A2



(c)

• Terminating mass m at x = 0:

m
∂2y

∂t2
= −T

∂y

∂x

y(x, t) = ei(ωt−kx) + rei(ωt+kx)

=⇒ −mω2(1 + r) = ikT (1− r)

i.e. r =
kT − imω2

kT + imω2

R = |r|2 = 1

all energy reflected with phase change 2φ, tanφ = mω2/Tk

phase: + 1 if m = 0, eiπ = −1 if m → ∞


