CP4 REVISION LECTURE: NORMAL MODES
OUTLINE

> Systems of Linear ODEs

> Solution by Normal Coordinates and Normal Modes

> Applications to Coupled Oscillators



Introduction to Normal Modes

e Consider a physical system with N degrees of freedom
whose dynamics is described by a set of coupled linear ODEs.

e To determine the normal modes of the system means to find
a set of N coordinates (normal coordinates) describing the system
which evolve independently like N harmonic oscillators.

e The frequencies of such harmonic motions are
the normal frequencies of the system.

> normal modes describe “collective” motion of the system
> general solution expressible as linear superposition of normal modes
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10. A linear mechanical system is constrained to move along a straight line. It consists
of two identical masses m and three springs lying on a smooth table, as shown.

The end springs are fastened to fixed supports. The force constant of the two end springs
is ky with an equilibrium extension s;, while that of the middle spring connecting the
masses is ko with an equilibrium extension ss- Show that, when the displacements of
the two masses from equilibrium are z; and z, respectively, the equations of motion are

(k1 + k2) ko

&+ ——Fx1 — —x2 =0,
m m
k k k
51'72'1‘—( L 2)172_ _2-T1 = 0. [6]
m m

Hence determine the frequencies of the two normal modes of the system and
show for the case when ky = ko = k that the two frequencies are w; = /k/m and
wo = /3k/m. [10]

What do the two cases ki > ko and ko > ki represent physically? 4]



¢ Two masses m moving on a straight line without friction
under the action of three springs:

X1 X2
m&il = —kla:l — /-CQ(Q?l — 332)
mio = —kixe + ka(x1 — 2)

l.e.,
jfl -+ [(kl + kg)/m].fl — (kg/m)$2 =0
jﬁg -+ [(kl + kg)/m]x‘g — (kg/m)$1 =0
2 coupled 2nd-order linear ODEs

& Two calculational approaches to finding normal modes of the system:
e decoupling method
e matrix method



Decoupling method

mi’l = —kla}l — kg(ﬂ?l — 332)
mio = —kixe + ka(x1 — 2)
e Setting
T1 + T2 T1 — T2
q1 = s g2 = normal

V2 V2

coordinates
gives
¢1 + (k1/m)q1 =0
Go + [(k1 + 2k2)/m]ga = 0

2 decoupled simple harmonic oscillators with frequencies

k1 k1 + 2ks .
Wi =4\l — , wo = normal frequencies
m m

o For k1 = ky =k, we have wy = \/k/m, wa = /3k/m.



Matrix method
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k,
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A
v
A
v

kX, ky (x, = x,) —k,x,

Newton’s law for each mass gives:

(k1 + k2) ko

i+ —Lx — —x0 =0, d_2+(kl+k2) K

m m dr’ m (xljzm
. (Rt ko) ko k, & (k+k) [\x) \0

- - =7 _ = o ——= _ =7
To + m To m33'1 0. " di’ m
_w2+(kl+k2) ky
X X iwt m m X _ 0
Try “ly )¢ ) Ily) o
X2 Y _k —o?+ (k + k)
m m
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_w2+(k1+k2) k
X, X\ ., m m X 0
™)y )e y) o
X, Y k& _w2+(kl+k2)
m m
Eigenvalues
_w2+(kl+k2) k
k +k
Det n m —0 (012_( ! 2)iﬁ
Ky _w2+(kl+k2) m m
m m

k=k,=k = o =vkim, o,=-3kIm

k, >k, 2 nearly decoupled oscillators with frequency \/k, / m

k, >k, 1 nearly decoupled oscillator with frequency 4/2k, / m + CM motion



Remarks

e 2 linear ODEs in z1(t),x2(t) — 2 mormal frequencies wi, woy
at which the system can oscillate as a whole.

= q1 X T1 + 2 and q; < x1 — x5 oscillate independently
as 2 SHO's with frequencies w1 and wy (normal modes)

e any motion of the system will be linear superposition of normal modes:
GS = C1 NM1 + C9 NM?2

1 (1) = ‘“;;2 _ \}5 Asin(wit + ¢) + Bsin(wat + )]
2o (t) = ‘“;;2 - \}5 [Asin(wit 4+ ¢) — Bsin(wat + )]

e total energy = sum of energies of each normal mode

1 1 1 1
E=T+V=§m(£i3%—|—j3%)—|—§k1$%—|—§k2 (5132—561)24—5]{133%

) 1 1 ) 1
mqi + 5 mwiqs +5 mgs + 5 mw3qs = E1 + B

o\ o
Ve Ve

E; Eo

1
2




Section B

8. Two particles of mass m and 2m are free to slide on a frictionless horizontal
circular wire of radius r. The particles are connected by two identical massless springs
of spring constant k& and natural length 7r, which also wind around the wire, as shown
in the figure.

June 2011

(a) Write down the equations of motion for the displacements x; and zy of the
two particles.

(b) Find the frequencies of the normal modes of the system, and qualitatively
explain their values.

(c) Find the functional forms of the motions associated with each of the normal
modes, including the appropriate time dependence.

(d) If, at time ¢ = 0, the displacements and velocities of the two particles are
given by x1(0) = nr/10, z2(0) = —7r/20, and #1(0) = %2(0) = wwr/20 (where w is
the largest of the frequencies found in (b)), find the first time when the velocity of the
particle of mass 2m is zero. Write your answer in terms of w.



(a) Equations of motion:
mil = —k(.fl — $2) + k(ﬂ?g — 331)

2m3’i‘2 = —k(ﬂ?g — 331) + k($1 — 332)

l.e. oL
X1 = _E(xl — 1’2)
. k
T2 = ——(562 — 561)
m
Decoupling method
. . 3k
X1 — T2 = ——(CU1 — 562)
m
e Set

g1 =21 +222 , @2 = X1 — To normal coordinates



= wi =0, wy=1\—=w normal frequencies

q1 < center-of-mass coordinate, g2 o< relative coordinate

ew; = 0 = uniform motion of ¢1 round the wire
e g2 oscillates with frequency wa = /3k/m = w

(c) = q1(t) = c1t + ¢}

q2(t) = cg sinwt + ¢, cos wt

2
r1(t) = o —; 2 _ o+ C] + 2(Cq sinwt + CY coswt)
L q1 — g2 . / . /
xo(t) = g = Cit + C] — (Cysinwt + C5 cos wt)

e linear superposition of normal modes



(d) Initial conditions
x1(0) = /10, 22(0) = —7r/20, 1(0) = 22(0) = 7wr/20 =
mr/10 = C1 4 2C%,
—7r/20 = C] — C}
mwr /20 = C7 4 2wCs
mwr /20 = C7 — wCy
= C1 =0, C,=mr/20, C; =7wr/20, Cy =0

Thus x1(t) = mrwt/20 4 (7wr/10) cos wt

ro(t) = mrwt/20 — (mr/20) cos wt

ta(tg) =0 = 7wrw/20+ (7mr/20)wsinwty = 0
= to=31/(2w) = (7/2)\/3m/k



. —w? + 2k
Ansatz (xl) = (Xl)e“"t — ( w" + 2k /m

X9

—w? +2k/m
—k/m

Alternative method to find the normal modes:
Matrix method

2k

L1 = _E(ajl — 332)
. k
Lo = _E(xQ — 1‘1)

) ()

— (—w? + 2k/m) (= + k/m) — 2(k/m)* = 0

—k/m

—2k/m
—w? +k/m

= w(w? —3k/m) =0

normal frequencies
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10.

Two masses m; and mo are connected together by a massless elastic string at
tension 1" between two fixed points A and B, as shown. Write down the equations
of motion for x; and x9, the transverse position in one plane from equilibrium of the
masses, neglecting the effects of gravity and damping.

Deduce values for the frequencies and related amplitude ratios of the two normal
modes for m; = 1.5kg, mg = 0.8kg, / =1m, T = 3N.

The masses are initially in equilibrium at rest. At time ¢ = 0 the mass my is
given a sudden transverse velocity 0.5ms~!. Find the subsequent displacement of z;

as a function of time.



¢ Equations of motion for transverse displacements x; and zs:
ml.flfl = —Tx1/€ + T(.CIZQ — 5131)/6
mgflfg = —Tx2/€ — T(.CIZQ — 5131)/6

Ansatz (i) B (X> 7 <_w2—c+r/2<iz/2(g " S i/z(ﬁ(i)fme)) (ﬁ) "

det =0 = [—w?+2T/(m0)|[—w” + 2T /(m20)] — (T/£)*/(mims2) =0



e m =15Kg, my=08Kg, {=1m,T=3N
= w1 =35 wy =158 571

¢ Amplitude ratios X5/X; in the two normal modes:
(—w? 4+ 2T/ (M) X1 — T/ (m1) X =0

= (X2/X1) a0 =2 mibws o /T

e Putting in the above values of wy and wy

N (&) __5 (&) _3
X1 NM1 2 X1 NM?2 4



e The general solution is linear superposition of the two normal modes:

(28) =4 (_;/2) cos(wit +¢) + B (3}4> cos(wot + )

¢ Initial conditions x1(0) = x2(0) =0, £1(0) = 0, 22(0) = 0.5 m/s require

(8> - (—;/2) oot B (3}4) cosy
(0(.)5) =4 (—51/2> Sin¢ —wy B (3}4) sin 1)

= ¢=¢v=-7/2, A=-2/(13w1), B =2/(13ws)
e Putting in the values of w; and wo

= () = —0.051 sin 3¢ + 0.097 sin 1.58¢
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10. A double pendulum consists of light, inextensible strings, AB and BC, each of
length ¢. It is fixed at one end A and carries two particles, each of mass m, which
hang under gravity. One of the particles is attached at the mid-point B while the other
1s located at C. The pendulum is constrained to move in a vertical plane. The angle
between the vertical and AB is € while the angle between BC and the vertical is ¢.
Show that, for small angles about the equilibrium position,

9+%(20—¢)=0,

$+27 (¢ —0)=0.

Determine the normal frequencies for small oscillations of this system and show
that the higher frequency 1s (\/f + 1) times the lower frequency. Show also that, in

both normal modes, the amplitude of ¢ is /2 times that of 6.

Draw a sketch to show the instantaneous positions of the two masses at maximum
amplitude for both the high and low frequency modes and calculate the difference in
the frequency of the two modes for £ = 10 cm.

[ Take the acceleration due to gravity to be g = 9-8ms=2. |

[7]

3]

[5]
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__— T'sin(¢-0)
mg sin6
\ mg cos
mg sing T =mg cosp = mg
mg

mlO = —mgsin@ + mgsin (¢ — 0) = —mg(20 — )

0+§(2e—¢)=0

m(1+1§)=-mgsing = §= —§¢+ %(29_ 0)
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d> 2g g
SN
(28 4 28 \9) 0
! dr’ 1
28 g
2
0\ (X)W | 7T T |x) (o
Try = e =
9) \Y _28 e 28 \Y) 0
[
Eigenvalues
_o* 428 8
Det : l =0 = wfzzg(2ix/§)
_2 .28 !
! !

2
o} 2+42 2+42 2+«/§_(2+\/§)
w; 2-v2 2-272+2 2

Eigenvectors

T s -

2
_Tg —§(2J_r\/5)

|~

=+l

%)
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12. Two identical masses m; = mo = m are connected by a massless spring with
spring constant k. Mass mq is attached to a support by another massless spring with
spring constant 2k. The masses and springs lie along the horizontal x-axis on a smooth
surface. The masses and the support are allowed to move along the x-axis only. The
displacement of the support in the x-direction at time ¢ is given by f(¢) and is externally
controlled. Write down a system of differential equations describing the evolution of the
displacements x1 and xzo of the masses from their equilibrium positions.

Determine the frequencies of the normal modes and their amplitude ratios.

The displacement of the support is given by f(t) = Asin(wt) with w? = k/m and
constant amplitude A. Find expressions for x1(¢) and x5(t) assuming that any transients
have been damped out by a small, otherwise negligible, damping term.



¢ Coupled oscillators with a driving term:

2k  m k m

— X X
f(t) 1 2
mii‘g = —k(i[)g — £L‘1)

mibl = —2]€(£L‘1 — f(t)) — k(i[)l — £L‘2)

e Homogeneous case (f = 0):

k
— mnormal frequencies w; = \/—(2 +V2) , wy= \/E(Q —/2)
m m

amplitude ratios: (Xo/Xi)nvyp1=1-— V2, (Xo/X1)Npm2 =1+ V2



e Driving term f(t) = Asinwt, w = \/k/m:

z1(t) = ChIm ' | 25(t) = Cylm ™"
Cl —3 1 Cl
2 _ 2 2
= la)= (7 A) ()

Thus: —C;=-3C;+Cy+2A
Oy =1 =G

— 0120,02:—214

$1(t) =0 , Qig(t) = —2Asinwt

2
0

)4



8. Two massless springs each have spring constant k. Masses 2m and m are attached
as shown in the figure.
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2m

m

The masses make small vertical oscillations about their equilibirium positions.

Show that the respective displacements x and y of the masses 2m and m satisfy the
coupled differential equations

d%z k
@ = a2
d2y k
w® = m Y

and explain why there is no term involving the acceleration due to gravity.

Find expressions for the normal frequencies for small oscillations of the masses.

Find the ratio of the amplitudes for each normal mode.



my=-k(y-x)
2mx=—-kx-k(x-y)
g does not appear because x and y are

displacements from equilibrium
(gravity will determine shift mg/k ofthe zero)

j = (k/m)(z—y)
7= [k/(2m)|(y — 2z)




Matrix method

)=

—w*+k/m
—k/m

—k/2m

—w?+k/m|
5o kK 1 k
= W' — — =*x — —
m 2 M

k

w? = —

m

—k/2m
—w* +k/m

) (

X
Y

) =o

N\
[S—
H-
N
[\
N
=
o
=
=
=
=
D
O
-
D
=
Q.
D
0]



e Normal mode 1: w? = w? = (k/m) (1 + 1/v/2)

(—? +k/m)X =[k/2m)]Y = —X/V2=Y/2 ie, X/Y =-1/V2

e Normal mode 2: w? = w3 = (k/m) (1 —1/v2)

(—w2 +k/m)X =[k/2m)]Y = X/V2=Y/2 ie, X/Y =1/V2

X Tl X lT
Y lT Y lT

move against move together



