
CP4 REVISION LECTURE: NORMAL MODES
OUTLINE

⊲ Systems of Linear ODEs

⊲ Solution by Normal Coordinates and Normal Modes

⊲ Applications to Coupled Oscillators



Introduction to Normal Modes

• Consider a physical system with N degrees of freedom
whose dynamics is described by a set of coupled linear ODEs.

• To determine the normal modes of the system means to find

a set of N coordinates (normal coordinates) describing the system

which evolve independently like N harmonic oscillators.

• The frequencies of such harmonic motions are
the normal frequencies of the system.

⊲ normal modes describe “collective” motion of the system
⊲ general solution expressible as linear superposition of normal modes



June 2003 Q10 Phys 



♦ Two masses m moving on a straight line without friction

under the action of three springs:

k kk

1 2x x

m1 2 1m

mẍ1 = −k1x1 − k2(x1 − x2)

mẍ2 = −k1x2 + k2(x1 − x2)

i.e.,

ẍ1 + [(k1 + k2)/m]x1 − (k2/m)x2 = 0

ẍ2 + [(k1 + k2)/m]x2 − (k2/m)x1 = 0

2 coupled 2nd-order linear ODEs

♠ Two calculational approaches to finding normal modes of the system:

• decoupling method

• matrix method



Decoupling method

mẍ1 = −k1x1 − k2(x1 − x2)

mẍ2 = −k1x2 + k2(x1 − x2)

• Setting

q1 =
x1 + x2√

2
, q2 =

x1 − x2√
2

normal

coordinates

gives

q̈1 + (k1/m)q1 = 0

q̈2 + [(k1 + 2k2)/m]q2 = 0

2 decoupled simple harmonic oscillators with frequencies

ω1 =

√

k1
m

, ω2 =

√

k1 + 2k2
m

normal frequencies

• For k1 = k2 = k, we have ω1 =
√

k/m, ω2 =
√

3k/m.



Matrix method
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Newton’s law for each mass gives: 
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k1 ! k2   2 nearly decoupled oscillators with frequency k1 / m

 
k2 ! k1   1 nearly decoupled oscillator with frequency 2k2 / m + CM  motion
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Remarks

• 2 linear ODEs in x1(t), x2(t) −→ 2 normal frequencies ω1, ω2

at which the system can oscillate as a whole.

⇒ q1 ∝ x1 + x2 and q1 ∝ x1 − x2 oscillate independently

as 2 SHO’s with frequencies ω1 and ω2 (normal modes)

• any motion of the system will be linear superposition of normal modes:
GS = c1 NM1 + c2 NM2

x1(t) =
q1 + q2
√

2
=

1
√

2
[A sin(ω1t+ φ) +B sin(ω2t+ ψ)]

x2(t) =
q1 − q2
√

2
=

1
√

2
[A sin(ω1t+ φ)−B sin(ω2t+ ψ)]

• total energy = sum of energies of each normal mode

E = T + V =
1

2
m (ẋ2

1
+ ẋ2

2
) +

1

2
k1x

2

1
+

1

2
k2 (x2 − x1)

2 +
1

2
k1x

2

2

=
1

2
mq̇21 +

1

2
mω2

1q
2

1

︸ ︷︷ ︸

E1

+
1

2
mq̇22 +

1

2
mω2

2q
2

2

︸ ︷︷ ︸

E2

= E1 + E2
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Section B

8. Two particles of mass m and 2m are free to slide on a frictionless horizontal
circular wire of radius r. The particles are connected by two identical massless springs
of spring constant k and natural length πr, which also wind around the wire, as shown
in the figure.

x1

x2

2m

m

(a) Write down the equations of motion for the displacements x1 and x2 of the
two particles. [2]

(b) Find the frequencies of the normal modes of the system, and qualitatively
explain their values. [6]

(c) Find the functional forms of the motions associated with each of the normal
modes, including the appropriate time dependence. [7]

(d) If, at time t = 0, the displacements and velocities of the two particles are
given by x1(0) = πr/10, x2(0) = −πr/20, and ẋ1(0) = ẋ2(0) = πωr/20 (where ω is
the largest of the frequencies found in (b)), find the first time when the velocity of the
particle of mass 2m is zero. Write your answer in terms of ω. [5]



(a) Equations of motion:

mẍ1 = −k(x1 − x2) + k(x2 − x1)

2mẍ2 = −k(x2 − x1) + k(x1 − x2)

i.e.

ẍ1 = −2k

m
(x1 − x2)

ẍ2 = − k

m
(x2 − x1)

Decoupling method

(b) ⇒ ẍ1 + 2ẍ2 = 0

ẍ1 − ẍ2 = −3k

m
(x1 − x2)

• Set

q1 = x1 + 2x2 , q2 = x1 − x2 normal coordinates



⇒
q̈1 = 0

q̈2 + (3k/m)q2 = 0

⇒ ω1 = 0 , ω2 =

√

3k

m
≡ ω normal frequencies

q1 ∝ center-of-mass coordinate, q2 ∝ relative coordinate

•ω1 = 0 ⇒ uniform motion of q1 round the wire

• q2 oscillates with frequency ω2 =
√

3k/m ≡ ω

(c) ⇒ q1(t) = c1t+ c′
1

q2(t) = c2 sinωt+ c′
2
cosωt

⇒

x1(t) =
q1 + 2q2

3
= C1t+ C ′

1
+ 2(C2 sinωt+ C ′

2
cosωt)

x2(t) =
q1 − q2

3
= C1t+ C ′

1
− (C2 sinωt+ C ′

2
cosωt)

• linear superposition of normal modes



(d) Initial conditions

x1(0) = πr/10 , x2(0) = −πr/20 , ẋ1(0) = ẋ2(0) = πωr/20 ⇒
πr/10 = C ′

1
+ 2C ′

2

−πr/20 = C ′

1
− C ′

2

πωr/20 = C1 + 2ωC2

πωr/20 = C1 − ωC2

⇒ C ′

1
= 0 , C ′

2
= πr/20 , C1 = πωr/20 , C2 = 0

Thus x1(t) = πrωt/20 + (πr/10) cosωt

x2(t) = πrωt/20− (πr/20) cosωt

ẋ2(t0) = 0 ⇒ πrω/20 + (πr/20)ω sinωt0 = 0

⇒ t0 = 3π/(2ω) = (π/2)
√

3m/k



Alternative method to find the normal modes:

Matrix method

ẍ1 = −2k

m
(x1 − x2)

ẍ2 = − k

m
(x2 − x1)

Ansatz

(

x1

x2

)

=

(

X1

X2

)

eiωt −→
(−ω2 + 2k/m −2k/m

−k/m −ω2 + k/m

) (

X1

X2

)

= 0

∣

∣

∣

∣

−ω2 + 2k/m −2k/m

−k/m −ω2 + k/m

∣

∣

∣

∣

= (−ω2 + 2k/m)(−ω2 + k/m)− 2(k/m)2 = 0

⇒ ω2(ω2 − 3k/m) = 0

i.e.,

ω2

1
= 0 , ω2

2
=

3k

m
normal frequencies
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10.

! !
mm

1 2 !
A B

Two masses m1 and m2 are connected together by a massless elastic string at
tension T between two fixed points A and B, as shown. Write down the equations
of motion for x1 and x2, the transverse position in one plane from equilibrium of the
masses, neglecting the effects of gravity and damping. [4]

Deduce values for the frequencies and related amplitude ratios of the two normal
modes for m1 = 1.5 kg, m2 = 0.8 kg, ℓ = 1m, T = 3N. [8]

The masses are initially in equilibrium at rest. At time t = 0 the mass m2 is
given a sudden transverse velocity 0.5m s−1. Find the subsequent displacement of x1

as a function of time. [8]



T

θ
θ1

θ2

m

m

1

2

x
x

1
2

T T

T

♦ Equations of motion for transverse displacements x1 and x2:

m1ẍ1 = −Tx1/ℓ+ T (x2 − x1)/ℓ

m2ẍ2 = −Tx2/ℓ− T (x2 − x1)/ℓ

Ansatz

(

x1

x2

)

=

(

X1

X2

)

eiωt
−→

(

−ω2 + 2T/(m1ℓ) −T/(m1ℓ)

−T/(m2ℓ) −ω2 + 2T/(m2ℓ)

) (

X1

X2

)

= 0

det = 0 ⇒ [−ω2 + 2T/(m1ℓ)][−ω2 + 2T/(m2ℓ)]− (T/ℓ)2/(m1m2) = 0



⇒ ω4 − 2T

ℓ

(

1

m1

+
1

m2

)

ω2 +
3

m1m2

(

T

ℓ

)2

= 0

i.e.,

ω2

1,2 =
T

ℓ

1

m1m2

[

m1 +m2 ±
√

m2

1
+m2

2
−m1m2

]

normal frequencies

• m1 = 1.5 Kg, m2 = 0.8 Kg, ℓ = 1 m, T = 3 N

⇒ ω1 = 3 s−1, ω2 = 1.58 s−1

♦ Amplitude ratios X2/X1 in the two normal modes:

(−ω2 + 2T/(m1ℓ))X1 − T/(m1ℓ)X2 = 0

⇒ (X2/X1)NM1,2 = 2−m1ℓω
2

1,2/T

• Putting in the above values of ω1 and ω2

⇒
(

X2

X1

)

NM1

= −5

2
,

(

X2

X1

)

NM2

=
3

4



• The general solution is linear superposition of the two normal modes:
(

x1(t)

x2(t)

)

= A

(

1

−5/2

)

cos(ω1t+ φ) +B

(

1

3/4

)

cos(ω2t+ ψ)

♦ Initial conditions x1(0) = x2(0) = 0, ẋ1(0) = 0, ẋ2(0) = 0.5 m/s require

(

0

0

)

= A

(

1

−5/2

)

cosφ+B

(

1

3/4

)

cosψ

(

0

0.5

)

= −ω1A

(

1

−5/2

)

sinφ− ω2B

(

1

3/4

)

sinψ

⇒ φ = ψ = −π/2 , A = −2/(13ω1) , B = 2/(13ω2)

• Putting in the values of ω1 and ω2

⇒ x1(t) = −0.051 sin 3t+ 0.097 sin 1.58t
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12. Two identical masses m1 = m2 = m are connected by a massless spring with
spring constant k. Mass m1 is attached to a support by another massless spring with
spring constant 2k. The masses and springs lie along the horizontal x-axis on a smooth
surface. The masses and the support are allowed to move along the x-axis only. The
displacement of the support in the x-direction at time t is given by f(t) and is externally
controlled. Write down a system of differential equations describing the evolution of the
displacements x1 and x2 of the masses from their equilibrium positions. [5]

Determine the frequencies of the normal modes and their amplitude ratios. [8]

The displacement of the support is given by f(t) = A sin(ωt) with ω
2 = k/m and

constant amplitude A. Find expressions for x1(t) and x2(t) assuming that any transients
have been damped out by a small, otherwise negligible, damping term. [7]



♦ Coupled oscillators with a driving term:

kk

1 2x x

mm2

f(t)

mẍ2 = −k(x2 − x1)

mẍ1 = −2k(x1 − f(t))− k(x1 − x2)

• Homogeneous case (f = 0):

−→ normal frequencies ω1 =

√

k

m
(2 +

√
2) , ω2 =

√

k

m
(2−

√
2)

amplitude ratios : (X2/X1)NM1 = 1−
√
2 , (X2/X1)NM2 = 1 +

√
2



• Driving term f(t) = A sinωt, ω =
√

k/m:

x1(t) = C1Im eiωt , x2(t) = C2Im eiωt

=⇒ −ω2

(

C1

C2

)

= ω2

(−3 1

1 −1

)(

C1

C2

)

+ ω2

(

2

0

)

A

Thus : −C1 = −3C1 + C2 + 2A

−C2 = C1 − C2

=⇒ C1 = 0, C2 = −2A

x1(t) = 0 , x2(t) = −2A sinωt
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8. Two massless springs each have spring constant k. Masses 2m and m are attached
as shown in the figure.

2m

m

The masses make small vertical oscillations about their equilibirium positions.
Show that the respective displacements x and y of the masses 2m and m satisfy the
coupled differential equations

d2x

dt2
=

k

2m
(y − 2x)

d2y

dt2
=

k

m
(x − y)

and explain why there is no term involving the acceleration due to gravity. [7]

Find expressions for the normal frequencies for small oscillations of the masses. [7]

Find the ratio of the amplitudes for each normal mode. [6]

9. a) Prove the identity



k

k

x

y m

2 m

m y = − k ( y − x )

2 m x = − k x − k ( x − y )

. . 

. . 

g does not appear because x and y are 

(gravity will determine shift mg/k of the zero)
displacements from equilibrium 

ÿ = (k/m)(x− y)

ẍ = [k/(2m)](y − 2x)



Matrix method

Ansatz

(

x

y

)

=

(

X

Y

)

eiωt −→
(−ω2 + k/m −k/2m

−k/m −ω2 + k/m

) (

X

Y

)

= 0

∣

∣

∣

∣

−ω2 + k/m −k/2m
−k/m −ω2 + k/m

∣

∣

∣

∣

= (−ω2 + k/m)2 − (k/m)2/2 = 0

⇒ ω2 − k

m
= ± 1√

2

k

m

i.e.,

ω2 =
k

m

(

1± 1√
2

)

normal frequencies



• Normal mode 1: ω2 = ω2
1 = (k/m)

(

1 + 1/
√
2
)

(−ω2

1
+ k/m)X = [k/(2m)]Y =⇒ −X/

√
2 = Y/2 i.e., X/Y = −1/

√
2

• Normal mode 2: ω2 = ω2
2 = (k/m)

(

1− 1/
√
2
)

(−ω2

2
+ k/m)X = [k/(2m)]Y =⇒ X/

√
2 = Y/2 i.e., X/Y = 1/

√
2

X

Y

X

Y

move against move together

NM 1 NM 2


