CP4 REVISION LECTURE: NORMAL MODES OUTLINE

\triangleright Systems of Linear ODEs
\triangleright Solution by Normal Coordinates and Normal Modes
\triangleright Applications to Coupled Oscillators

Introduction to Normal Modes

- Consider a physical system with N degrees of freedom whose dynamics is described by a set of coupled linear ODEs.
- To determine the normal modes of the system means to find a set of N coordinates (normal coordinates) describing the system which evolve independently like N harmonic oscillators.
- The frequencies of such harmonic motions are the normal frequencies of the system.
\triangleright normal modes describe "collective" motion of the system \triangleright general solution expressible as linear superposition of normal modes

June 2003 Q10 Phys

10. A linear mechanical system is constrained to move along a straight line. It consists of two identical masses m and three springs lying on a smooth table, as shown.

The end springs are fastened to fixed supports. The force constant of the two end springs is k_{1} with an equilibrium extension s_{1}, while that of the middle spring connecting the masses is k_{2} with an equilibrium extension s_{2}. Show that, when the displacements of the two masses from equilibrium are x_{1} and x_{2} respectively, the equations of motion are

$$
\begin{aligned}
& \ddot{x}_{1}+\frac{\left(k_{1}+k_{2}\right)}{m} x_{1}-\frac{k_{2}}{m} x_{2}=0, \\
& \ddot{x}_{2}+\frac{\left(k_{1}+k_{2}\right)}{m} x_{2}-\frac{k_{2}}{m} x_{1}=0 .
\end{aligned}
$$

Hence determine the frequencies of the two normal modes of the system and show for the case when $k_{1}=k_{2}=k$ that the two frequencies are $\omega_{1}=\sqrt{k / m}$ and $\omega_{2}=\sqrt{3 k / m}$.

What do the two cases $k_{1} \gg k_{2}$ and $k_{2} \gg k_{1}$ represent physically?
\diamond Two masses m moving on a straight line without friction under the action of three springs:

$$
\begin{aligned}
& m \ddot{x}_{1}=-k_{1} x_{1}-k_{2}\left(x_{1}-x_{2}\right) \\
& m \ddot{x}_{2}=-k_{1} x_{2}+k_{2}\left(x_{1}-x_{2}\right)
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& \ddot{x}_{1}+\left[\left(k_{1}+k_{2}\right) / m\right] x_{1}-\left(k_{2} / m\right) x_{2}=0 \\
& \ddot{x}_{2}+\left[\left(k_{1}+k_{2}\right) / m\right] x_{2}-\left(k_{2} / m\right) x_{1}=0
\end{aligned}
$$

2 coupled 2nd-order linear ODEs
© Two calculational approaches to finding normal modes of the system:

- decoupling method
- matrix method

Decoupling method

$$
\begin{aligned}
& m \ddot{x}_{1}=-k_{1} x_{1}-k_{2}\left(x_{1}-x_{2}\right) \\
& m \ddot{x}_{2}=-k_{1} x_{2}+k_{2}\left(x_{1}-x_{2}\right)
\end{aligned}
$$

- Setting

$$
q_{1}=\frac{x_{1}+x_{2}}{\sqrt{2}}, q_{2}=\frac{x_{1}-x_{2}}{\sqrt{2}}
$$

coordinates
gives

$$
\begin{gathered}
\ddot{q}_{1}+\left(k_{1} / m\right) q_{1}=0 \\
\ddot{q}_{2}+\left[\left(k_{1}+2 k_{2}\right) / m\right] q_{2}=0
\end{gathered}
$$

2 decoupled simple harmonic oscillators with frequencies
$\omega_{1}=\sqrt{\frac{k_{1}}{m}}, \quad \omega_{2}=\sqrt{\frac{k_{1}+2 k_{2}}{m}} \quad$ normal frequencies

- For $k_{1}=k_{2}=k$, we have $\omega_{1}=\sqrt{k / m}, \omega_{2}=\sqrt{3 k / m}$.

Matrix method

June 2003 Q10 Phys

Newton's law for each mass gives:

$$
\begin{gathered}
\ddot{x}_{1}+\frac{\left(k_{1}+k_{2}\right)}{m} x_{1}-\frac{k_{2}}{m} x_{2}=0, \\
\ddot{x}_{2}+\frac{\left(k_{1}+k_{2}\right)}{m} x_{2}-\frac{k_{2}}{m} x_{1}=0 .
\end{gathered} \quad\left(\begin{array}{cc}
\frac{d^{2}}{d t^{2}}+\frac{\left(k_{1}+k_{2}\right)}{m} & -\frac{k_{2}}{m} \\
-\frac{k_{2}}{m} & \frac{d^{2}}{d t^{2}}+\frac{\left(k_{1}+k_{2}\right)}{m}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

$$
\operatorname{Try}\binom{x_{1}}{x_{2}}=\binom{X}{Y} e^{i \omega t} \quad\left(\begin{array}{cc}
-\omega^{2}+\frac{\left(k_{1}+k_{2}\right)}{m} & -\frac{k_{2}}{m} \\
-\frac{k_{2}}{m} & -\omega^{2}+\frac{\left(k_{1}+k_{2}\right)}{m}
\end{array}\right)\binom{X}{Y}=\binom{0}{0}
$$

June 2003 Q10 Phys

$$
\operatorname{Try}\binom{x_{1}}{x_{2}}=\binom{X}{Y} e^{i \omega t} \quad\left(\begin{array}{cc}
-\omega^{2}+\frac{\left(k_{1}+k_{2}\right)}{m} & -\frac{k_{2}}{m} \\
-\frac{k_{2}}{m} & -\omega^{2}+\frac{\left(k_{1}+k_{2}\right)}{m}
\end{array}\right)\binom{X}{Y}=\binom{0}{0}
$$

Eigenvalues

$$
\begin{aligned}
& \operatorname{Det}\left(\begin{array}{cc}
-\omega^{2}+\frac{\left(k_{1}+k_{2}\right)}{m} & -\frac{k_{2}}{m} \\
-\frac{k_{2}}{m} & -\omega^{2}+\frac{\left(k_{1}+k_{2}\right)}{m}
\end{array}\right)=0 \Rightarrow \omega_{1,2}^{2}=\frac{\left(k_{1}+k_{2}\right)}{m} \pm \frac{k_{2}}{m} \\
& k_{1}=k_{2}=k \quad \Rightarrow \quad \omega_{1}=\sqrt{k / m}, \quad \omega_{2}=\sqrt{3 k / m}
\end{aligned}
$$

$k_{1} \gg k_{2} 2$ nearly decoupled oscillators with frequency $\sqrt{\mathrm{k}_{1} / m}$
$k_{2} \gg k_{1} 1$ nearly decoupled oscillator with frequency $\sqrt{2 \mathrm{k}_{2} / m}+C M$ motion

Remarks

- 2 linear ODEs in $x_{1}(t), x_{2}(t) \longrightarrow 2$ normal frequencies ω_{1}, ω_{2} at which the system can oscillate as a whole.
$\Rightarrow q_{1} \propto x_{1}+x_{2}$ and $q_{1} \propto x_{1}-x_{2}$ oscillate independently as 2 SHO's with frequencies ω_{1} and ω_{2} (normal modes)
- any motion of the system will be linear superposition of normal modes:

$$
\begin{gathered}
\mathrm{GS}=c_{1} \mathrm{NM} 1+c_{2} \mathrm{NM} 2 \\
x_{1}(t)=\frac{q_{1}+q_{2}}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[A \sin \left(\omega_{1} t+\phi\right)+B \sin \left(\omega_{2} t+\psi\right)\right] \\
x_{2}(t)=\frac{q_{1}-q_{2}}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[A \sin \left(\omega_{1} t+\phi\right)-B \sin \left(\omega_{2} t+\psi\right)\right]
\end{gathered}
$$

- total energy $=$ sum of energies of each normal mode

$$
\begin{aligned}
E=T & +V=\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}\right)+\frac{1}{2} k_{1} x_{1}^{2}+\frac{1}{2} k_{2}\left(x_{2}-x_{1}\right)^{2}+\frac{1}{2} k_{1} x_{2}^{2} \\
& =\underbrace{\frac{1}{2} m \dot{q}_{1}^{2}+\frac{1}{2} m \omega_{1}^{2} q_{1}^{2}}_{E_{1}} \underbrace{+\frac{1}{2} m \dot{q}_{2}^{2}+\frac{1}{2} m \omega_{2}^{2} q_{2}^{2}}_{E_{2}}=E_{1}+E_{2}
\end{aligned}
$$

Section B

8. Two particles of mass m and $2 m$ are free to slide on a frictionless horizontal circular wire of radius r. The particles are connected by two identical massless springs of spring constant k and natural length πr, which also wind around the wire, as shown in the figure.

(a) Write down the equations of motion for the displacements x_{1} and x_{2} of the two particles.
(b) Find the frequencies of the normal modes of the system, and qualitatively explain their values.
(c) Find the functional forms of the motions associated with each of the normal modes, including the appropriate time dependence.
(d) If, at time $t=0$, the displacements and velocities of the two particles are given by $x_{1}(0)=\pi r / 10, x_{2}(0)=-\pi r / 20$, and $\dot{x}_{1}(0)=\dot{x}_{2}(0)=\pi \omega r / 20$ (where ω is the largest of the frequencies found in (b)), find the first time when the velocity of the particle of mass $2 m$ is zero. Write your answer in terms of ω.
(a) Equations of motion:

$$
\begin{aligned}
m \ddot{x}_{1} & =-k\left(x_{1}-x_{2}\right)+k\left(x_{2}-x_{1}\right) \\
2 m \ddot{x}_{2} & =-k\left(x_{2}-x_{1}\right)+k\left(x_{1}-x_{2}\right)
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& \ddot{x}_{1}=-\frac{2 k}{m}\left(x_{1}-x_{2}\right) \\
& \ddot{x}_{2}=-\frac{k}{m}\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Decoupling method
(b) $\quad \Rightarrow \quad \ddot{x}_{1}+2 \ddot{x}_{2}=0$

$$
\ddot{x}_{1}-\ddot{x}_{2}=-\frac{3 k}{m}\left(x_{1}-x_{2}\right)
$$

- Set

$$
q_{1}=x_{1}+2 x_{2} \quad, \quad q_{2}=x_{1}-x_{2}
$$

\Rightarrow

$$
\begin{gathered}
\ddot{q}_{1}=0 \\
\ddot{q}_{2}+(3 k / m) q_{2}=0
\end{gathered}
$$

$\Rightarrow \quad \omega_{1}=0, \quad \omega_{2}=\sqrt{\frac{3 k}{m}} \equiv \omega \quad$ normal frequencies $q_{1} \propto$ center-of-mass coordinate, $q_{2} \propto$ relative coordinate - $\omega_{1}=0 \Rightarrow$ uniform motion of q_{1} round the wire - q_{2} oscillates with frequency $\omega_{2}=\sqrt{3 k / m} \equiv \omega$
(c) $\quad \Rightarrow$

$$
q_{1}(t)=c_{1} t+c_{1}^{\prime}
$$

$$
q_{2}(t)=c_{2} \sin \omega t+c_{2}^{\prime} \cos \omega t
$$

\Rightarrow

$$
\begin{gathered}
x_{1}(t)=\frac{q_{1}+2 q_{2}}{3}=C_{1} t+C_{1}^{\prime}+2\left(C_{2} \sin \omega t+C_{2}^{\prime} \cos \omega t\right) \\
x_{2}(t)=\frac{q_{1}-q_{2}}{3}=C_{1} t+C_{1}^{\prime}-\left(C_{2} \sin \omega t+C_{2}^{\prime} \cos \omega t\right)
\end{gathered}
$$

- linear superposition of normal modes
(d) Initial conditions

$$
\begin{gathered}
x_{1}(0)=\pi r / 10, x_{2}(0)=-\pi r / 20, \dot{x}_{1}(0)=\dot{x}_{2}(0)=\pi \omega r / 20 \Rightarrow \\
\pi r / 10=C_{1}^{\prime}+2 C_{2}^{\prime} \\
-\pi r / 20=C_{1}^{\prime}-C_{2}^{\prime} \\
\pi \omega r / 20=C_{1}+2 \omega C_{2} \\
\pi \omega r / 20=C_{1}-\omega C_{2} \\
\Rightarrow C_{1}^{\prime}=0, C_{2}^{\prime}=\pi r / 20, C_{1}=\pi \omega r / 20, C_{2}=0
\end{gathered}
$$

Thus $\quad x_{1}(t)=\pi r \omega t / 20+(\pi r / 10) \cos \omega t$

$$
x_{2}(t)=\pi r \omega t / 20-(\pi r / 20) \cos \omega t
$$

$$
\begin{aligned}
\dot{x}_{2}\left(t_{0}\right) & =0 \Rightarrow \pi r \omega / 20+(\pi r / 20) \omega \sin \omega t_{0}=0 \\
& \Rightarrow t_{0}=3 \pi /(2 \omega)=(\pi / 2) \sqrt{3 m / k}
\end{aligned}
$$

Alternative method to find the normal modes:
Matrix method

$$
\begin{aligned}
\ddot{x}_{1} & =-\frac{2 k}{m}\left(x_{1}-x_{2}\right) \\
\ddot{x}_{2} & =-\frac{k}{m}\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Ansatz $\binom{x_{1}}{x_{2}}=\binom{X_{1}}{X_{2}} e^{i \omega t} \longrightarrow\left(\begin{array}{cc}-\omega^{2}+2 k / m & -2 k / m \\ -k / m & -\omega^{2}+k / m\end{array}\right)\binom{X_{1}}{X_{2}}=0$

$$
\begin{aligned}
& \left|\begin{array}{cc}
-\omega^{2}+2 k / m & -2 k / m \\
-k / m & -\omega^{2}+k / m
\end{array}\right|=\left(-\omega^{2}+2 k / m\right)\left(-\omega^{2}+k / m\right)-2(k / m)^{2}=0 \\
& \Rightarrow \omega^{2}\left(\omega^{2}-3 k / m\right)=0 \\
& \text { i.e., } \\
& \omega_{1}^{2}=0, \omega_{2}^{2}=\frac{3 k}{m} \quad \text { normal frequencies }
\end{aligned}
$$

June 2007

10.

Two masses m_{1} and m_{2} are connected together by a massless elastic string at tension T between two fixed points A and B , as shown. Write down the equations of motion for x_{1} and x_{2}, the transverse position in one plane from equilibrium of the masses, neglecting the effects of gravity and damping.

Deduce values for the frequencies and related amplitude ratios of the two normal modes for $m_{1}=1.5 \mathrm{~kg}, m_{2}=0.8 \mathrm{~kg}, \ell=1 \mathrm{~m}, T=3 \mathrm{~N}$.

The masses are initially in equilibrium at rest. At time $t=0$ the mass m_{2} is given a sudden transverse velocity $0.5 \mathrm{~m} \mathrm{~s}^{-1}$. Find the subsequent displacement of x_{1} as a function of time.

Equations of motion for transverse displacements x_{1} and x_{2} :

$$
\begin{aligned}
& m_{1} \ddot{x}_{1}=-T x_{1} / \ell+T\left(x_{2}-x_{1}\right) / \ell \\
& m_{2} \ddot{x}_{2}=-T x_{2} / \ell-T\left(x_{2}-x_{1}\right) / \ell
\end{aligned}
$$

Ansatz $\binom{x_{1}}{x_{2}}=\binom{X_{1}}{X_{2}} e^{i \omega t} \longrightarrow\left(\begin{array}{cc}-\omega^{2}+2 T /\left(m_{1} \ell\right) & -T /\left(m_{1} \ell\right) \\ -T /\left(m_{2} \ell\right) & -\omega^{2}+2 T /\left(m_{2} \ell\right)\end{array}\right)\binom{X_{1}}{X_{2}}=0$

$$
\operatorname{det}=0 \Rightarrow\left[-\omega^{2}+2 T /\left(m_{1} \ell\right)\right]\left[-\omega^{2}+2 T /\left(m_{2} \ell\right)\right]-(T / \ell)^{2} /\left(m_{1} m_{2}\right)=0
$$

$$
\begin{gathered}
\Rightarrow \omega^{4}-\frac{2 T}{\ell}\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \omega^{2}+\frac{3}{m_{1} m_{2}}\left(\frac{T}{\ell}\right)^{2}=0 \\
\text { i.e., } \\
\omega_{1,2}^{2}=\frac{T}{\ell} \frac{1}{m_{1} m_{2}}\left[m_{1}+m_{2} \pm \sqrt{m_{1}^{2}+m_{2}^{2}-m_{1} m_{2}}\right] \quad \text { normal frequencies }
\end{gathered}
$$

- $m_{1}=1.5 \mathrm{Kg}, m_{2}=0.8 \mathrm{Kg}, \ell=1 \mathrm{~m}, T=3 \mathrm{~N}$

$$
\Rightarrow \quad \omega_{1}=3 s^{-1}, \omega_{2}=1.58 s^{-1}
$$

\diamond Amplitude ratios X_{2} / X_{1} in the two normal modes:

$$
\begin{aligned}
& \left(-\omega^{2}+2 T /\left(m_{1} \ell\right)\right) X_{1}-T /\left(m_{1} \ell\right) X_{2}=0 \\
& \quad \Rightarrow\left(X_{2} / X_{1}\right)_{N M 1,2}=2-m_{1} \ell \omega_{1,2}^{2} / T
\end{aligned}
$$

- Putting in the above values of ω_{1} and ω_{2}

$$
\Rightarrow\left(\frac{X_{2}}{X_{1}}\right)_{N M 1}=-\frac{5}{2}, \quad\left(\frac{X_{2}}{X_{1}}\right)_{N M 2}=\frac{3}{4}
$$

- The general solution is linear superposition of the two normal modes:

$$
\binom{x_{1}(t)}{x_{2}(t)}=A\binom{1}{-5 / 2} \cos \left(\omega_{1} t+\phi\right)+B\binom{1}{3 / 4} \cos \left(\omega_{2} t+\psi\right)
$$

\diamond Initial conditions $x_{1}(0)=x_{2}(0)=0, \dot{x}_{1}(0)=0, \dot{x}_{2}(0)=0.5 \mathrm{~m} / \mathrm{s}$ require

$$
\begin{gathered}
\binom{0}{0}=A\binom{1}{-5 / 2} \cos \phi+B\binom{1}{3 / 4} \cos \psi \\
\binom{0}{0.5}=-\omega_{1} A\binom{1}{-5 / 2} \sin \phi-\omega_{2} B\binom{1}{3 / 4} \sin \psi \\
\Rightarrow \quad \phi=\psi=-\pi / 2, \quad A=-2 /\left(13 \omega_{1}\right), \quad B=2 /\left(13 \omega_{2}\right)
\end{gathered}
$$

- Putting in the values of ω_{1} and ω_{2}

$$
\Rightarrow x_{1}(t)=-0.051 \sin 3 t+0.097 \sin 1.58 t
$$

10. A double pendulum consists of light, inextensible strings, $A B$ and $B C$, each of length ℓ. It is fixed at one end A and carries two particles, each of mass m, which hang under gravity. One of the particles is attached at the mid-point B while the other is located at C. The pendulum is constrained to move in a vertical plane. The angle between the vertical and AB is θ while the angle between BC and the vertical is ϕ. Show that, for small angles about the equilibrium position,

$$
\begin{aligned}
& \ddot{\theta}+\frac{g}{\ell}(2 \theta-\phi)=0 \\
& \ddot{\phi}+2 \frac{g}{\ell}(\phi-\theta)=0 .
\end{aligned}
$$

Determine the normal frequencies for small oscillations of this system and show that the higher frequency is $(\sqrt{2}+1)$ times the lower frequency. Show also that, in both normal modes, the amplitude of ϕ is $\sqrt{2}$ times that of θ.

Draw a sketch to show the instantaneous positions of the two masses at maximum amplitude for both the high and low frequency modes and calculate the difference in the frequency of the two modes for $\ell=10 \mathrm{~cm}$.
[Take the acceleration due to gravity to be $g=9.8 \mathrm{~ms}^{-2}$.]

Sept 2003 Q10 Phys

$$
\begin{aligned}
& m l \ddot{\theta}=-m g \sin \theta+m g \sin (\phi-\theta) \simeq-m g(2 \theta-\phi) \\
& \ddot{\theta}+\frac{g}{l}(2 \theta-\phi)=0 \\
& m(l \ddot{\theta}+l \ddot{\phi})=-m g \sin \phi \Rightarrow \ddot{\phi}=-\frac{g}{l} \phi+\frac{g}{l}(2 \theta-\phi) \\
& \ddot{\phi}+\frac{2 g}{l}(\phi-\theta)=0 \\
& \left(\begin{array}{cc}
\frac{d^{2}}{d t^{2}}+\frac{2 g}{l} & -\frac{g}{l} \\
-\frac{2 g}{l} & \frac{d^{2}}{d t^{2}}+\frac{2 g}{l}
\end{array}\right)\binom{\theta}{\phi}=\binom{0}{0}
\end{aligned}
$$

Sept 2003 Q10 Phys

$$
\begin{aligned}
& \left(\begin{array}{cc}
\frac{d^{2}}{d t^{2}}+\frac{2 g}{l} & -\frac{g}{l} \\
-\frac{2 g}{l} & \frac{d^{2}}{d t^{2}}+\frac{2 g}{l}
\end{array}\right)\binom{\theta}{\phi}=\binom{0}{0} \\
& \operatorname{Try}\binom{\theta}{\phi}=\binom{X}{Y} e^{i \omega t} \quad\left(\begin{array}{cc}
-\omega^{2}+\frac{2 g}{l} & -\frac{g}{l} \\
-\frac{2 g}{l} & -\omega^{2}+\frac{2 g}{l}
\end{array}\right)\binom{X}{Y}=\binom{0}{0}
\end{aligned}
$$

Eigenvalues

$$
\operatorname{Det}\left(\begin{array}{cc}
-\omega^{2}+\frac{2 g}{l} & -\frac{g}{l} \\
-\frac{2 g}{l} & -\omega^{2}+\frac{2 g}{l}
\end{array}\right)=0 \Rightarrow \omega_{1,2}^{2}=\frac{g}{l}(2 \pm \sqrt{2})
$$

$$
\frac{\omega_{1}^{2}}{\omega_{2}^{2}}=\frac{2+\sqrt{2}}{2-\sqrt{2}}=\frac{2+\sqrt{2}}{2-\sqrt{2}} \cdot \frac{2+\sqrt{2}}{2+\sqrt{2}}=\frac{(2+\sqrt{2})^{2}}{2} \Rightarrow \frac{\omega_{1}}{\omega_{2}}=1+\sqrt{2}
$$

Eigenvectors

$$
\left(\begin{array}{cc}
-\frac{g}{l}(2 \pm \sqrt{2})+\frac{2 g}{l} & -\frac{g}{l} \\
-\frac{2 g}{l} & -\frac{g}{l}(2 \pm \sqrt{2})+\frac{2 g}{l}
\end{array}\right)\binom{X}{Y}=\binom{0}{0} \Rightarrow\left(\begin{array}{cc}
\mp \sqrt{2} & -1 \\
-2 & \mp \sqrt{2}
\end{array}\right)\binom{X}{Y}=\binom{0}{0} \quad \begin{aligned}
& \frac{Y}{X}=\mp \sqrt{2}
\end{aligned}
$$

June 2006

12. Two identical masses $m_{1}=m_{2}=m$ are connected by a massless spring with spring constant k. Mass m_{1} is attached to a support by another massless spring with spring constant $2 k$. The masses and springs lie along the horizontal x -axis on a smooth surface. The masses and the support are allowed to move along the x-axis only. The displacement of the support in the x -direction at time t is given by $f(t)$ and is externally controlled. Write down a system of differential equations describing the evolution of the displacements x_{1} and x_{2} of the masses from their equilibrium positions.

Determine the frequencies of the normal modes and their amplitude ratios.
The displacement of the support is given by $f(t)=A \sin (\omega t)$ with $\omega^{2}=k / m$ and constant amplitude A. Find expressions for $x_{1}(t)$ and $x_{2}(t)$ assuming that any transients have been damped out by a small, otherwise negligible, damping term.

Coupled oscillators with a driving term:

- Homogeneous case $(f=0)$:
\longrightarrow normal frequencies $\omega_{1}=\sqrt{\frac{k}{m}(2+\sqrt{2})} \quad, \quad \omega_{2}=\sqrt{\frac{k}{m}(2-\sqrt{2})}$
amplitude ratios: $\left(X_{2} / X_{1}\right)_{N M 1}=1-\sqrt{2}, \quad\left(X_{2} / X_{1}\right)_{N M 2}=1+\sqrt{2}$
- Driving term $f(t)=A \sin \omega t, \omega=\sqrt{k / m}$:

$$
\begin{gathered}
x_{1}(t)=C_{1} \operatorname{Im} e^{i \omega t}, \quad x_{2}(t)=C_{2} \operatorname{Im} e^{i \omega t} \\
\Longrightarrow \quad-\omega^{2}\binom{C_{1}}{C_{2}}=\omega^{2}\left(\begin{array}{cc}
-3 & 1 \\
1 & -1
\end{array}\right)\binom{C_{1}}{C_{2}}+\omega^{2}\binom{2}{0} A
\end{gathered}
$$

$$
\text { Thus: } \begin{aligned}
-C_{1} & =-3 C_{1}+C_{2}+2 A \\
-C_{2} & =C_{1}-C_{2}
\end{aligned}
$$

$$
\Longrightarrow \quad C_{1}=0, C_{2}=-2 A
$$

$$
x_{1}(t)=0, \quad x_{2}(t)=-2 A \sin \omega t
$$

8. Two massless springs each have spring constant k. Masses $2 m$ and m are attached as shown in the figure.

June 2008

The masses make small vertical oscillations about their equilibirium positions. Show that the respective displacements x and y of the masses $2 m$ and m satisfy the coupled differential equations

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=\frac{k}{2 m}(y-2 x) \\
& \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=\frac{k}{m}(x-y)
\end{aligned}
$$

and explain why there is no term involving the acceleration due to gravity.
Find expressions for the normal frequencies for small oscillations of the masses.
Find the ratio of the amplitudes for each normal mode.

$$
\begin{aligned}
& m \ddot{y}=-k(y-x) \\
& 2 m \ddot{x}=-k x-k(x-y)
\end{aligned}
$$

g does not appear because x and y are displacements from equilibrium (gravity will determine shift mg/k of the zero)

$$
\begin{gathered}
\ddot{y}=(k / m)(x-y) \\
\ddot{x}=[k /(2 m)](y-2 x)
\end{gathered}
$$

Matrix method

Ansatz $\binom{x}{y}=\binom{X}{Y} e^{i \omega t} \longrightarrow\left(\begin{array}{cc}-\omega^{2}+k / m & -k / 2 m \\ -k / m & -\omega^{2}+k / m\end{array}\right)\binom{X}{Y}=0$

$$
\begin{gathered}
\left|\begin{array}{cc}
-\omega^{2}+k / m & -k / 2 m \\
-k / m & -\omega^{2}+k / m
\end{array}\right|=\left(-\omega^{2}+k / m\right)^{2}-(k / m)^{2} / 2=0 \\
\Rightarrow \omega^{2}-\frac{k}{m}= \pm \frac{1}{\sqrt{2}} \frac{k}{m} \\
\text { i.e., }
\end{gathered}
$$

$$
\omega^{2}=\frac{k}{m}\left(1 \pm \frac{1}{\sqrt{2}}\right) \quad \text { normal frequencies }
$$

- Normal mode 1: $\omega^{2}=\omega_{1}^{2}=(k / m)(1+1 / \sqrt{2})$

$$
\left(-\omega_{1}^{2}+k / m\right) X=[k /(2 m)] Y \Longrightarrow-X / \sqrt{2}=Y / 2 \quad \text { i.e., } \quad X / Y=-1 / \sqrt{2}
$$

- Normal mode 2: $\omega^{2}=\omega_{2}^{2}=(k / m)(1-1 / \sqrt{2})$

$$
\left(-\omega_{2}^{2}+k / m\right) X=[k /(2 m)] Y \Longrightarrow X / \sqrt{2}=Y / 2 \quad \text { i.e., } \quad X / Y=1 / \sqrt{2}
$$

move against

move together

