CP3 REVISION LECTURE ON
Ordinary differential equations

1 First order linear equations

2 First order nonlinear equations

3 Second order linear equations with constant coefficients

4 Systems of linear ordinary differential equations



BASIC CONCEPTS

e Every differential equation involves a differential operator.

Order of a differential operator: order of highest derivative contained in it

e Linearity: differential operator L is linear if
for any two functions f and ¢

L(af + Bg) = aLf + BLg

with v and 5 any constants.

e Linearity = superposition principle:
If f1 and f5 are solutions of Lf = 0, then any
linear combination af; 4+ B fs is also solution.



Lf=20 homogeneous differential equation

Lf=h(x)#0  inhomogeneous differential equation

e General solution of linear inhomogeneous ODE Lf = h is sum

of a particular solution fy (the “particular integral”, Pl) and the general
solution f; of the associated homogeneous equation (the
“complementary function”, CF):

f:f()_'_fl)
ie., GS = PI + CF .

e |nitial conditions:

n initial conditions needed to specify solution
of linear ODE of order n



First order linear equations

d
General form : afﬂl(x)f = h(x). Easy to solve

Integrating factor /

Look for a function I(x) such that I(X)% + I(x)g(x)f = i{if = I(x)h(x)
X

X

J-q(x')dx'

I(x)=¢e

Solution : f(x)= % j I(x")Yh(x")dx'
X




June 2006

2. Find the general solution of the differential equation

1 dy .
——~ — = =sinx
rdr  x?
[Answ.: z(c — cos )]
June 2008

4. Solve the differential equation

d 2
x(r + 1)% +y=ua(x+1)% "

[Answ.: (¢ — e—” /2)(x +1)/x]

September 2009

3. Solve the differential equation

dy
T—— + 2y =cosx
dx

[Answ.: (coszx + zsinz + ¢)/x?]



First order nonlinear equations

Although no general method for solution is available, there are several cases of
physically relevant nonlinear equations which can be solved analytically :

dy _ f(x)
Separable equations I = @ Solution : _[g(y)dy :Jf(x)dx

%zf(ax+by)

Almost separable equations

dz
Change variables : z=ax+by . =a+bf(z) Separable
d
Homogeneous equations Ey — f(y/x).

dv

1
Change variables : y=VX —=—(f(v)—vV) Separable
dx x



dy x+2y+1
dx x+y+2

Homogeneous but for constants

Change variables : x =x'+a, y=y'+b

dy' x+2y+1+a+2b x'+2y'
Y XLy “ _172) , a=-3,b=1 Homogeneous
dx' x4+ y4+2+a+b x'+y'

d "
The Bernoulli equation ay+ P(x)y=0(x)y", n#l

1-n

Change variables: z=y

% +(1-n)P(x)z=(1-n)Q(x), First order linear
X



dy — 0¢/0x
dv ~ 0¢/0y

Exact equations :

for a given function ¢(z, y)

e [hen solution is determined by

¢(x,1y) = constant .



June 2005
1. Solve the differential equation

o, 4y _ ylz+y)

. = “homogeneous”
[Answ.: y =z /(1 — c\/x)]
June 2007
8. Find the general solution to the differential equation
dy L 44 bl 79
= separable
Vidr ~ 4z +3 P

[Answ.: y? = c+x/2 — (3/8) In(4x + 3)]

September 2009

3. Solve the differential equation

d
y__Z Y “almost separable”
de 1—xz—y

[Answ.: y — (z +y)?/2 = (]



1. Solve the differential equation

d
i + 2y = zy®  “Bernoulli”
dx

[Answ.: y = 1/(1 + C€x2/2)]

2. Solve the differential equation

dy . .
(2y — x cosy) o= +siny  “exact
T

[Answ.: xsiny — y? + 22/2 = ]



GEOMETRICAL INTERPRETATION OF SOLUTIONS

e General solution of a first-order ODE ¢’ = f(z,y)
contains an arbitrary constant: y = (x, ¢)
> one curve in x,y plane for each value of ¢ = family of curves

Example: v = —x/y.
separable equation = /y dy = —/a: der = y?/2=—2?/2+c¢

i.e., 2 + y? = constant : family of circles centered at origin
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Orthogonal family of curves: ¢y = —1/f(z,y)

Example: ¢y =y/z = y=cx



SUMMARY ON NONLINEAR FIRST-ORDER ODEs

e No general method of solution for 1st-order ODEs beyond linear case;
rather, a variety of techniques that work on a case-by-case basis.

Examples:

i) Bring equation to separated-variables form, that is, ¥ = a(x)/B(y);
then equation can be integrated.
Cases covered by this include vy = p(ax + by); v = p(y/x).

ii) Reduce to linear equation by transformation of variables.
Examples of this include Bernoulli’s equation.

iii) Bring equation to exact-differential form, that is
dy/dx = —M (x,y)/N(x,y) such that M = 0¢/0x, N = 0¢/0y.
Then solution determined from ¢(x,y) = const.



SECOND-ORDER LINEAR ODEs
"+ @) f +q(x)f = h(x)

e General solution = PI 4+ CF

o CF = C1U1 + CoU9
11 and wus linearly independent solutions
of the homogeneous equation

e 2nd-order linear ODEs with constant coefficients:
agf” + Cllf/ + Clof — h([lﬁ)
> Complementary function CF by solving auziliary equation

> Particular integral PI by trial function with functional form
of the inhomogeneous term



Second order linear equation with constant coefficients

df, df

Lf:a2?+ala+a0f:h(x).

2

2

Complementary function Lfo =a, i 0 4+

dfy

alE+aofO=0.

Try f,=¢e™ ‘ a,m’+am+a, =0.

2
_—a x \/az1 —4a,a,

T 2a, \

“Auxiliary” equation

2
a, —4a,a, — +,0,—

m X m X
‘ Complementary function ﬁ) = A+C T+ A_C .

;

Two constants of integration



Second order linear equation with constant coefficients

Lf:azf;—{+al%+aof:h(x).

d*f, df,

Complementary function Lf, =a,

0 —
5 +a15+a0f0—0.

Try f,=¢e™ ‘ a,m’+am+a, =0.

2
—a, \/az1 —4a,a,

T 2a, \

“Auxiliary” equation

2
a, —4a,a, — +,0,—

Complementary function
=) f, = Ae™ + Bxe™

Repeated roots



Second order linear equation with constant coefficients

Lf:azf;—{+al%+a0f:h(x).

2
df,
Complementary function Lf, = a, 20 +a, 4 a,f, =0.
dx dx
ho 9
Particular integral Lf =a,—5 +aq, E +a,f =h

General solution : £, + f,




June 2006
4. Solve the differential equation

d’y  dy
Py
3d:1:2 i dr 7 0
with initial conditions y(0) = 0 and dy/dx(0) = 7.

[Answ.: 3(e® — e=47/3)]

September 2007

3. Find the general solution of the differential equation

d*y . _dy
— 4+ 7— + 12y =3 2t
[Answ.: c1e™ 4 + coe™3t 4 €2t /10]
June 2008

5. Find the general solution of the differential equation

Py dy
—— 4+ 3=+ 2y=e"
dx? + dx tey=e

[Answ.: c1e™% + coe 2% + ze™ 7]



10. A mass m is suspended on a spring. Its displacement y as a function of time ¢ is
described by the equation

d? d Fy .
September 2009 Y oY 2 T
P dt? + Tat +woy m©

)

where 7, wg and Fy are constants. Initially no driving force is present (Fp = 0). De-
termine the solution to the equation when 7? < w3, subject to the initial conditions
Y = 1o and%zoattzo.

The driving force is now applied. Find the time dependence of y at sufficiently long
times such that all transients have died away. Sketch as a function of w the amplitude
of y and its phase ¢ relative to the driving force.

When w = wq, show that the average power supplied by the driving force is

Fy

P, = )
av Amyy

CPSC 4296 4



Y+ 27y + Wiy = (Fo/m) e

CF (Fy = 0):

Characteristiceq. A +29A+wi =0 = A\ =— =+ \/WQ — w3

72<w§:)\i:—vj:i\/w8—w2
S —

(A)/

So CF = e "[Acosw't + Bsinw't] .

Initial conditions y(0) = yo, ¥'(0) =0
= A=1yy, Bw —Ay=0 = B =yyy/u

Thus y(t) = yoe "*[cosw't + (/W) sinw't] .



PI (F switched on):
Trial function y = Ce™' = C(—w? + 2viw + wj) = Fy/m

Fo/m

So C' = = |Cle"®
7 wi — w? + 2vyiw Cle
F
where |C| = o/ (amplitude)
V(W — w?)? + 4y
2
tan ¢ = s s (phase)

2 _
W — Wy



d
e Power P supplied by the driving force F': P = F d—i

| | d |
where F = Fyet | y(t) = |C|e“tH9) d_th = |Ciwe!@ite)

e Using the explicit expressions determined previously
for amplitude |C| and phase ¢ we get

P wFE /m sin(2wt + ¢) + sin ¢
\/(wg — w2)2 4 42?2 2
tan ¢ 2w

where sin¢ = =
V14tan?o  (wE — w?)? + 4y2w?

e Taking the average power (P) ({(sin(2wt + ¢)) = 0)
YW EG /m

p— P —
< > (W(Q) _w2>2 _|_472w2
FﬁO2 2 2
Thus (P) for w® =wy .

a Amyy



SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

e more than 1 unknown function: y;(z),y2(x), ..., yn(x)

e set of ODEs that couple y1,...,y,

> physical applications: systems with more than 1 degree of freedom.
dynamics couples differential equations for different variables.

Example. System of first-order differential equations:

yll — Fl(xaylawa"ayn)

yé — F2($7y17y27-°-7yn)

y7/1 — Fn(maylay%-'-ayn)



& Systems of linear ODEs with constant coefficients can be solved
by a generalization of the method seen for single ODE:

General solution = PI + CF

> Complementary function CF' by solving
system of auxiliary equations

> Particular integral PI from a

set of trial functions
with functional form as the inhomogeneous terms



June 2007

The variables ¥(z) and ¢(z) obey the
simultaneous differential equations

d
—¢—|—5¢:2z
dz
d

3 W 55—,
dz

Find the general solution for .

e Differentiating 2nd equation wrt z gives

2y de _ d*p 5

-3 —4+5 =3 —+—=(22—5
. dz? + dz dz? +3 (22 ¥)
2y 25 10
le. — — — = —— 2
dz? 9 9

e Solve this 2nd-order linear ODE with constant coefficients:



CF: Auxiliary equation m* —25/9 =0 = my = +5/3.
So CF = Aed*/3 4 Be=%/3,

PI: Trial function ¢g = Ciz + Cy =

General solution for ) :

2
W(2) =CF +Pl=A >34+ Be 53 4 =7



June 2008

10. Consider the coupled differential equations

d

d—?Jrau—bv = f
dv+ +bu = 0
o Tavthu =

where a,b and f are constants.
i) Solve them for f = 0, subject to the boundary conditions ©v = 0 and v = vy
when ¢t = 0. [10]

ii) Solve them for f # 0, subject to the boundary conditions © = v = 0 when
t = 0, and write down the steady state solutions. [10]



e Using notation D = d/dt,
(D+a)u—bv=f
bu+ (D +a)v =0
e Apply D + a on 1st eq. and multiply 2nd eq. by b:
(D4 a)*u—0b(D+a)v=(D+a)f
b*u + b(D + a)v =0
e Add the two equations:
(D +a)* +bJu=af
which is 2nd-order ODE with constant coefficients

u” 4 2au’ + (b* 4+ a*)u = af .



General solution

CF: Auxiliary equation A2 + 2a\ + (b* +a®) =0 = Ay = —a % ib.
So CF = ¢~ *[A cos bt + B sin bt].

PI: Trial function: constant ug = C = C = af/(a* + b?).
General solution for u :

w(t) = CF + Pl = e “[Acosbt + Bsinbt] + af/(a® + b*) .

General solution for v :

v(t) = b (D + a)u — f] = e *[—Asinbt + Bcosbt] — bf/(a* + b?) .



) f=0,u(0)=0and v(0) =vg = A=0,B =1
Therefore u(t) = vge *sinbt |

v(t) = voe~* cos bt .

i) f#0,u(0)=v(0)=0 = A=—af/(a®*+b%),B=0f/(a® + b?)
Therefore u(t) = f/(a® + b*)[e"*(—acosbt + bsinbt) + a| ,

v(t) = f/(a® + b*)[e " (asinbt + bcosbt) — b] .

Steady state solutions ¢ — oo:

uw=af/(a®*+b°), v=—bf/(a*+b°).



