CP3 REVISION LECTURE ON
 Ordinary differential equations

1 First order linear equations

2 First order nonlinear equations

3 Second order linear equations with constant coefficients

4 Systems of linear ordinary differential equations

BASIC CONCEPTS

- Every differential equation involves a differential operator. Order of a differential operator: order of highest derivative contained in it
- Linearity: differential operator L is linear if for any two functions f and g

$$
\begin{aligned}
& L(\alpha f+\beta g)=\alpha L f+\beta L g \\
& \text { with } \alpha \text { and } \beta \text { any constants. }
\end{aligned}
$$

- Linearity \Rightarrow superposition principle:

If f_{1} and f_{2} are solutions of $L f=0$, then any linear combination $\alpha f_{1}+\beta f_{2}$ is also solution.

$L f=0 \quad$ homogeneous differential equation

$$
L f=h(x) \neq 0 \quad \text { inhomogeneous differential equation }
$$

- General solution of linear inhomogeneous ODE $L f=h$ is sum of a particular solution f_{0} (the "particular integral", PI) and the general solution f_{1} of the associated homogeneous equation (the "complementary function", CF):

$$
\begin{aligned}
f & =f_{0}+f_{1} \\
\text { i.e., } \quad \mathrm{GS} & =\mathrm{PI}+\mathrm{CF} .
\end{aligned}
$$

- Initial conditions:
n initial conditions needed to specify solution of linear ODE of order n

First order linear equations

$$
\text { General form : } \frac{\mathrm{d} f}{\mathrm{~d} x}+q(x) f=h(x)
$$

Look for a function $\mathrm{I}(\mathrm{x})$ such that $\mathrm{I}(\mathrm{x}) \frac{\mathrm{d} f}{\mathrm{~d} x}+I(x) q(x) f \equiv \frac{d I f}{d x}=I(x) h(x)$

$$
I(x)=e^{\int^{x} q\left(x^{\prime}\right) d x^{\prime}}
$$

$$
\text { Solution : } f(x)=\frac{1}{I(x)} \int_{x_{0}}^{x} I\left(x^{\prime}\right) h\left(x^{\prime}\right) d x^{\prime}
$$

June 2006

2. Find the general solution of the differential equation

$$
\frac{1}{x} \frac{d y}{d x}-\frac{y}{x^{2}}=\sin x
$$

$$
\text { [Answ.: } x(c-\cos x) \text {] }
$$

June 2008
4. Solve the differential equation

$$
x(x+1) \frac{d y}{d x}+y=x(x+1)^{2} e^{-x^{2}}
$$

$$
\text { [Answ.: } \left.\left(c-e^{-x^{2}} / 2\right)(x+1) / x\right]
$$

September 2009
3. Solve the differential equation

$$
x \frac{d y}{d x}+2 y=\cos x
$$

[Answ.: $(\cos x+x \sin x+c) / x^{2}$]

First order nonlinear equations

Although no general method for solution is available, there are several cases of physically relevant nonlinear equations which can be solved analytically :
Separable equations $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{f(x)}{g(y)} \quad$ Solution : $\quad \int g(y) d y=\int f(x) d x$

Almost separable equations $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=f(a x+b y)$

Change variables: $\quad z=a x+b y$

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}=a+b f(z) \quad \text { Separable }
$$

$$
\text { Homogeneous equations } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=f(y / x)
$$

Change variables: $\quad y=\mathrm{v} x \quad \frac{d \mathrm{v}}{d x}=\frac{1}{x}(f(\mathrm{v})-\mathrm{v}) \quad$ Separable

Homogeneous but for constants

$$
\frac{d y}{d x}=\frac{x+2 y+1}{x+y+2}
$$

Change variables : $x=x^{\prime}+a, y=y^{\prime}+b$

$$
\frac{d y^{\prime}}{d x^{\prime}}=\frac{x^{\prime}+2 y^{\prime}+1+a+2 b}{x^{\prime}+y^{\prime}+2+a+b}=\frac{x^{\prime}+2 y^{\prime}}{x^{\prime}+y^{\prime}}, \quad a=-3, b=1 \quad \text { Homogeneous }
$$

The Bernoulli equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=Q(x) y^{n}, \quad n \neq 1
$$

Change variables : $\quad z=y^{1-n}$

$$
\frac{d z}{d x}+(1-n) P(x) z=(1-n) Q(x), \quad \text { First order linear }
$$

$$
\text { Exact equations : } \quad \frac{d y}{d x}=-\frac{\partial \phi / \partial x}{\partial \phi / \partial y}
$$

for a given function $\phi(x, y)$

- Then solution is determined by

$$
\phi(x, y)=\mathrm{constant}
$$

June 2005

1. Solve the differential equation
$2 \frac{d y}{d x}=\frac{y(x+y)}{x^{2}} \quad$ "homogeneous"

$$
[\text { Answ.: } y=x /(1-c \sqrt{x})]
$$

June 2007
8. Find the general solution to the differential equation

$$
\begin{aligned}
y \frac{d y}{d x}=\frac{x}{4 x+3} \quad & \text { "separable" } \\
& {\left[\text { Answ.: } y^{2}=c+x / 2-(3 / 8) \ln (4 x+3)\right] }
\end{aligned}
$$

September 2009
3. Solve the differential equation

$$
\frac{d y}{d x}=\frac{x+y}{1-x-y} \quad \text { "almost separable" }
$$

[Answ.: $y-(x+y)^{2} / 2=c$]

1. Solve the differential equation

$$
\frac{d y}{d x}+x y=x y^{2} \quad \text { "Bernoulli" }
$$

$$
\text { [Answ.: } \left.y=1 /\left(1+c e^{x^{2} / 2}\right)\right]
$$

2. Solve the differential equation

$$
\begin{aligned}
(2 y-x \cos y) \frac{d y}{d x}=x+\sin y & \text { "exact" } \\
& {\left[\text { Answ.: } x \sin y-y^{2}+x^{2} / 2=c\right] }
\end{aligned}
$$

GEOMETRICAL INTERPRETATION OF SOLUTIONS

- General solution of a first-order ODE $y^{\prime}=f(x, y)$ contains an arbitrary constant: $y=(x, c)$
\triangleright one curve in x, y plane for each value of $c \Rightarrow$ family of curves

$$
\text { Example: } y^{\prime}=-x / y \text {. }
$$

separable equation $\Rightarrow \int y d y=-\int x d x \Rightarrow y^{2} / 2=-x^{2} / 2+c$
i.e., $x^{2}+y^{2}=$ constant : family of circles centered at origin

Orthogonal family of curves : $y^{\prime}=-1 / f(x, y)$

$$
\text { Example : } y^{\prime}=y / x \Rightarrow y=c x
$$

SUMMARY ON NONLINEAR FIRST-ORDER ODEs

- No general method of solution for 1st-order ODEs beyond linear case; rather, a variety of techniques that work on a case-by-case basis.

Examples:

i) Bring equation to separated-variables form, that is, $y^{\prime}=\alpha(x) / \beta(y)$; then equation can be integrated.
Cases covered by this include $y^{\prime}=\varphi(a x+b y) ; \quad y^{\prime}=\varphi(y / x)$.
ii) Reduce to linear equation by transformation of variables. Examples of this include Bernoulli's equation.
iii) Bring equation to exact-differential form, that is $d y / d x=-M(x, y) / N(x, y)$ such that $M=\partial \phi / \partial x, N=\partial \phi / \partial y$.

Then solution determined from $\phi(x, y)=$ const.

SECOND-ORDER LINEAR ODEs

$$
f^{\prime \prime}+p(x) f^{\prime}+q(x) f=h(x)
$$

- General solution $=$ PI + CF
- $\mathrm{CF}=c_{1} u_{1}+c_{2} u_{2}$
u_{1} and u_{2} linearly independent solutions of the homogeneous equation
- 2nd-order linear ODEs with constant coefficients:

$$
a_{2} f^{\prime \prime}+a_{1} f^{\prime}+a_{0} f=h(x)
$$

\triangleright Complementary function CF by solving auxiliary equation
\triangleright Particular integral PI by trial function with functional form of the inhomogeneous term

Second order linear equation with constant coefficients

$$
L f=a_{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f}{\mathrm{~d} x}+a_{0} f=h(x)
$$

Complementary function

$$
L f_{0}=a_{2} \frac{\mathrm{~d}^{2} f_{0}}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f_{0}}{\mathrm{~d} x}+a_{0} f_{0}=0
$$

Try $f_{0}=\mathrm{e}^{m x}$
$\square \quad a_{2} m^{2}+a_{1} m+a_{0}=0$.

$$
m_{ \pm} \equiv \frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{2} a_{0}}}{2 a_{2}}, \quad \text { "Auxiliary" ec }
$$

Complementary function

$$
f_{0}=A_{+} \mathrm{e}^{m_{+} x}+A_{-} \mathrm{e}^{m_{-} x}
$$

Two constants of integration

Second order linear equation with constant coefficients

$$
L f=a_{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f}{\mathrm{~d} x}+a_{0} f=h(x)
$$

Complementary function

$$
L f_{0}=a_{2} \frac{\mathrm{~d}^{2} f_{0}}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f_{0}}{\mathrm{~d} x}+a_{0} f_{0}=0
$$

\[

\]

Complementary function

$$
f_{0}=A \mathrm{e}^{m x}+B x \mathrm{e}^{m x}
$$

Second order linear equation with constant coefficients

$$
L f=a_{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f}{\mathrm{~d} x}+a_{0} f=h(x) .
$$

Complementary function

$$
L f_{0}=a_{2} \frac{\mathrm{~d}^{2} f_{0}}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f_{0}}{\mathrm{~d} x}+a_{0} f_{0}=0
$$

Particular integral

$$
L f_{1}=a_{2} \frac{\mathrm{~d}^{2} f_{1}}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f_{1}}{\mathrm{~d} x}+a_{0} f_{1}=h
$$

General solution : $f_{0}+f_{1}$

June 2006
4. Solve the differential equation

$$
3 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-4 y=0
$$

with initial conditions $y(0)=0$ and $d y / d x(0)=7$.
[Answ.: $3\left(e^{x}-e^{-4 x / 3}\right)$]
September 2007
3. Find the general solution of the differential equation

$$
\frac{d^{2} y}{d t^{2}}+7 \frac{d y}{d t}+12 y=3 \exp (2 t)
$$

$$
\text { [Answ.: } \left.c_{1} e^{-4 t}+c_{2} e^{-3 t}+e^{2 t} / 10\right]
$$

June 2008
5. Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{-x}
$$

$$
\left[\text { Answ.: } c_{1} e^{-x}+c_{2} e^{-2 x}+x e^{-x}\right]
$$

10. A mass m is suspended on a spring. Its displacement y as a function of time t is described by the equation

September 2009

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \gamma \frac{\mathrm{~d} y}{\mathrm{~d} t}+\omega_{0}^{2} y=\frac{F_{0}}{m} e^{i \omega t}
$$

where γ, ω_{0} and F_{0} are constants. Initially no driving force is present $\left(F_{0}=0\right)$. Determine the solution to the equation when $\gamma^{2}<\omega_{0}^{2}$, subject to the initial conditions $y=y_{0}$ and $\frac{d y}{d t}=0$ at $t=0$.

The driving force is now applied. Find the time dependence of y at sufficiently long times such that all transients have died away. Sketch as a function of ω the amplitude of y and its phase ϕ relative to the driving force.

When $\omega=\omega_{0}$, show that the average power supplied by the driving force is

$$
P_{a v}=\frac{F_{0}^{2}}{4 m \gamma}
$$

$$
y^{\prime \prime}+2 \gamma y^{\prime}+\omega_{0}^{2} y=\left(F_{0} / m\right) e^{i \omega t}
$$

$$
\mathrm{CF}\left(F_{0}=0\right):
$$

Characteristic eq. $\quad \lambda^{2}+2 \gamma \lambda+\omega_{0}^{2}=0 \Rightarrow \lambda_{ \pm}=-\gamma \pm \sqrt{\gamma^{2}-\omega_{0}^{2}}$

$$
\gamma^{2}<\omega_{0}^{2}: \lambda_{ \pm}=-\gamma \pm i \underbrace{\sqrt{\omega_{0}^{2}-\gamma^{2}}}_{\omega^{\prime}}
$$

So $\mathrm{CF}=e^{-\gamma t}\left[A \cos \omega^{\prime} t+B \sin \omega^{\prime} t\right]$.

Initial conditions $y(0)=y_{0}, y^{\prime}(0)=0$
$\Rightarrow A=y_{0}, B \omega^{\prime}-A \gamma=0 \Rightarrow B=y_{0} \gamma / \omega^{\prime}$

Thus $y(t)=y_{0} e^{-\gamma t}\left[\cos \omega^{\prime} t+\left(\gamma / \omega^{\prime}\right) \sin \omega^{\prime} t\right]$.

PI (F switched on):

Trial function $y=C e^{i \omega t} \Rightarrow C\left(-\omega^{2}+2 \gamma i \omega+\omega_{0}^{2}\right)=F_{0} / m$

$$
\begin{gathered}
\text { So } C=\frac{F_{0} / m}{\omega_{0}^{2}-\omega^{2}+2 \gamma i \omega}=|C| e^{i \phi} \\
\text { where }|C|=\frac{F_{0} / m}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \gamma^{2} \omega^{2}}} \quad \text { (amplitude) } \\
\tan \phi=\frac{2 \gamma \omega}{\omega^{2}-\omega_{0}^{2}} \quad(\text { phase })
\end{gathered}
$$

- Power P supplied by the driving force $F: P=F \frac{d y}{d t}$
where $F=F_{0} e^{i \omega t}, \quad y(t)=|C| e^{i(\omega t+\phi)}, \quad \frac{d y}{d t}=|C| i \omega e^{i(\omega t+\phi)}$.
- Using the explicit expressions determined previously for amplitude $|C|$ and phase ϕ we get

$$
P=\frac{\omega F_{0}^{2} / m}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \gamma^{2} \omega^{2}}} \frac{\sin (2 \omega t+\phi)+\sin \phi}{2}
$$

where $\sin \phi=\frac{\tan \phi}{\sqrt{1+\tan ^{2} \phi}}=\frac{2 \gamma \omega}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \gamma^{2} \omega^{2}}}$

- Taking the average power $\langle P\rangle(\langle\sin (2 \omega t+\phi)\rangle=0)$

$$
\Rightarrow\langle P\rangle=\frac{\gamma \omega^{2} F_{0}^{2} / m}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \gamma^{2} \omega^{2}}
$$

Thus $\langle P\rangle=\frac{F_{0}^{2}}{4 m \gamma} \quad$ for $\omega^{2}=\omega_{0}^{2}$.

SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

- more than 1 unknown function: $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$
- set of ODEs that couple y_{1}, \ldots, y_{n}
\triangleright physical applications: systems with more than 1 degree of freedom. dynamics couples differential equations for different variables.

Example. System of first-order differential equations:

$$
\begin{gathered}
y_{1}^{\prime}=F_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
y_{2}^{\prime}=F_{2}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
\ldots \\
y_{n}^{\prime}=F_{n}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{gathered}
$$

\diamond Systems of linear ODEs with constant coefficients can be solved by a generalization of the method seen for single ODE:

$$
\text { General solution }=\mathrm{PI}+\mathrm{CF}
$$

\triangleright Complementary function CF by solving
system of auxiliary equations
\triangleright Particular integral PI from a
set of trial functions
with functional form as the inhomogeneous terms

June 2007

The variables $\psi(z)$ and $\phi(z)$ obey the simultaneous differential equations

$$
\begin{aligned}
& 3 \frac{d \phi}{d z}+5 \psi=2 z \\
& 3 \frac{d \psi}{d z}+5 \phi=0
\end{aligned}
$$

Find the general solution for ψ.

- Differentiating 2nd equation wrt z gives

$$
\begin{gathered}
0=3 \frac{d^{2} \psi}{d z^{2}}+5 \frac{d \phi}{d z}=3 \frac{d^{2} \psi}{d z^{2}}+\frac{5}{3}(2 z-5 \psi) \\
\text { i.e. } \frac{d^{2} \psi}{d z^{2}}-\frac{25}{9} \psi=-\frac{10}{9} z
\end{gathered}
$$

- Solve this 2nd-order linear ODE with constant coefficients:

CF: Auxiliary equation $m^{2}-25 / 9=0 \Rightarrow m_{ \pm}= \pm 5 / 3$. So $\mathrm{CF}=A e^{5 z / 3}+B e^{-5 z / 3}$.

$$
\begin{aligned}
& \text { PI: Trial function } \psi_{0}=C_{1} z+C_{0} \Rightarrow \\
& -(25 / 9) C_{1} z-(25 / 9) C_{0}=-10 / 9 z \\
& \Rightarrow C_{1}=2 / 5, C_{0}=0 \Rightarrow \mathrm{PI}=2 z / 5
\end{aligned}
$$

General solution for ψ :

$$
\psi(z)=\mathrm{CF}+\mathrm{PI}=A e^{5 z / 3}+B e^{-5 z / 3}+\frac{2}{5} z
$$

June 2008

10. Consider the coupled differential equations

$$
\begin{aligned}
& \frac{\mathrm{d} u}{\mathrm{~d} t}+a u-b v=f \\
& \frac{\mathrm{~d} v}{\mathrm{~d} t}+a v+b u=0
\end{aligned}
$$

where a, b and f are constants.
i) Solve them for $f=0$, subject to the boundary conditions $u=0$ and $v=v_{0}$ when $t=0$.
ii) Solve them for $f \neq 0$, subject to the boundary conditions $u=v=0$ when $t=0$, and write down the steady state solutions.

- Using notation $D=d / d t$,

$$
\begin{aligned}
& (D+a) u-b v=f \\
& b u+(D+a) v=0
\end{aligned}
$$

- Apply $D+a$ on 1 st eq. and multiply 2 nd eq. by b :

$$
\begin{aligned}
(D+a)^{2} u-b(D+a) v & =(D+a) f \\
b^{2} u+b(D+a) v & =0
\end{aligned}
$$

- Add the two equations:

$$
\left[(D+a)^{2}+b^{2}\right] u=a f
$$

which is 2 nd-order ODE with constant coefficients

$$
u^{\prime \prime}+2 a u^{\prime}+\left(b^{2}+a^{2}\right) u=a f
$$

General solution

CF: Auxiliary equation $\lambda^{2}+2 a \lambda+\left(b^{2}+a^{2}\right)=0 \Rightarrow \lambda_{ \pm}=-a \pm i b$.
So $\mathrm{CF}=e^{-a t}[A \cos b t+B \sin b t]$.

$$
\text { PI: Trial function: constant } u_{0}=C \Rightarrow C=a f /\left(a^{2}+b^{2}\right)
$$

General solution for u :

$$
u(t)=\mathrm{CF}+\mathrm{PI}=e^{-a t}[A \cos b t+B \sin b t]+a f /\left(a^{2}+b^{2}\right)
$$

General solution for v :

$$
v(t)=b^{-1}[(D+a) u-f]=e^{-a t}[-A \sin b t+B \cos b t]-b f /\left(a^{2}+b^{2}\right)
$$

i) $f=0, u(0)=0$ and $v(0)=v_{0} \Rightarrow A=0, B=v_{0}$

Therefore $u(t)=v_{0} e^{-a t} \sin b t$,

$$
v(t)=v_{0} e^{-a t} \cos b t
$$

ii) $f \neq 0, u(0)=v(0)=0 \Rightarrow A=-a f /\left(a^{2}+b^{2}\right), B=b f /\left(a^{2}+b^{2}\right)$

Therefore $u(t)=f /\left(a^{2}+b^{2}\right)\left[e^{-a t}(-a \cos b t+b \sin b t)+a\right]$,

$$
v(t)=f /\left(a^{2}+b^{2}\right)\left[e^{-a t}(a \sin b t+b \cos b t)-b\right] .
$$

Steady state solutions $t \rightarrow \infty$:

$$
u=a f /\left(a^{2}+b^{2}\right), \quad v=-b f /\left(a^{2}+b^{2}\right) .
$$

