

What happens to a traveling wave when it encounters a barrier, or discontinuity, or obstacle of some kind

• Example: inhomogeneity in mass density

- All waves have same ω necessary to satisfy boundary condition at x=0
- Right moving waves $-k_1x$
- Left moving waves $+k_2x$

$$\frac{\partial y}{\partial x}(x=0-,t) = \frac{\partial y}{\partial x}(x=0+,t) \qquad \frac{\partial \psi_{incident}(x=0,t)}{\partial x} + \frac{\partial \psi_{reflected}(0,t)}{\partial x} = \frac{\partial \psi_{transmitted}(0,t)}{\partial x}$$

$$\frac{\partial y}{\partial x}(x=0-,t) = \frac{\partial y}{\partial x}(x=0+,t) \qquad \frac{\partial \psi_{incident}(x=0,t)}{\partial x} + \frac{\partial \psi_{reflected}(0,t)}{\partial x} = \frac{\partial \psi_{transmitted}(0,t)}{\partial x}$$

A + A' = A'' $k_1 (A - A') = k_2 A''$

Special cases:

1) $k_1 = k_2 \implies A' = 0, t = \frac{A''}{A} = 1$ No reflection 2) $k_1 < k_2 \implies A'$ is negative Reflected wave $= -|A'|\sin(\omega t + k_1 x) = |A'|\sin(\omega t + k_1 x + \pi)$ i.e. PHASE CHANGE at rare-dense boundary $(k_1 < k_2 \implies \rho_1 < \rho_2)$ [$v = \omega / k = \sqrt{T / \rho}$]

3)
$$k_1 > k_2 \implies A'$$
 is positive

4)
$$\rho_2 \to \infty \implies k_2 \to \infty$$
 $r = \frac{A'}{A} \to -1$ $T \to 0$ No wave in very heavy string

Energy flux at boundaries

Power flux
$$P = \frac{1}{2}T\omega kA^2$$

(Energy flow per unit time)

Incident power flux

Reflected power flux

Transmitted power flux

$$P_{I} = \frac{1}{2}T\omega k_{1}A^{2}$$
$$P_{R} = \frac{1}{2}T\omega k_{1}A'^{2}$$
$$P_{T} = \frac{1}{2}T\omega k_{2}A''^{2}$$

 $R_{p} = \frac{P_{R}}{P_{I}} = \frac{A'^{2}}{A^{2}} = r^{2} = \left(\frac{k_{1} - k_{2}}{k_{1} + k_{2}}\right)^{2}$ Coefficient of reflection

$$T_{P} = \frac{P_{T}}{P_{I}} = \frac{k_{2}A''^{2}}{k_{1}A^{2}} = \frac{k_{2}}{k_{1}}t^{2} = \frac{k_{2}}{k_{1}}\left(\frac{2k_{1}}{k_{1}+k_{2}}\right)^{2} = \frac{4k_{1}k_{2}}{\left(k_{1}+k_{2}\right)^{2}}$$

Coefficient of transmission

$$R_{p} + T_{p} = \left(\frac{k_{1} - k_{2}}{k_{1} + k_{2}}\right)^{2} + \frac{4k_{1}k_{2}}{\left(k_{1} + k_{2}\right)^{2}} = \frac{k_{1}^{2} + 2k_{1}k_{2} + k_{2}^{2}}{\left(k_{1} + k_{2}\right)^{2}} = 1$$
 Conservation of energy

Summary

• Continuity of y and $\partial y/\partial x$ at the boundary x=0 determines the amplitudes of the reflected and transmitted waves in terms of the amplitude of the incident wave as a function of the wave numbers k_1 and k_2 :

$$r = \frac{k_1 - k_2}{k_1 + k_2}$$
; $t = \frac{2k_1}{k_1 + k_2}$

• Energy transport across the boundary:

 $R \equiv \frac{reflected \ flux}{incident \ flux} = r^2 \qquad \text{reflection coefficient}$

 $T \equiv \frac{transmitted \ flux}{incident \ flux} = \frac{k_2}{k_1} \ t^2$

transmission coefficient

$$1 = R + T$$