Boundary effects

- What happens to a traveling wave when it encounters a barrier, or discontinuity, or obstacle of some kind
- Example: inhomogeneity in mass density

- All waves have same ω - necessary to satisfy boundary condition at x=0
- Right moving waves $-k_{1} x$
- Left moving waves $+k_{2} x$

Boundary conditions

$$
\begin{array}{ll}
y(x=0-, t)=y(x=0+, t) & \text { String continuous } \\
\frac{\partial y}{\partial x}(x=0-, t)=\frac{\partial y}{\partial x}(x=0+, t) & \text { Forces continuous }
\end{array}
$$

Boundary conditions

$$
\begin{array}{cc}
y(x=0-, t)=y(x=0+, t) & \psi_{\text {incident }}(x=0, t)+\psi_{\text {reflected }}(0, t)=\psi_{\text {transmited }}(0, t) \\
\frac{\partial y}{\partial x}(x=0-, t)=\frac{\partial y}{\partial x}(x=0+, t) & \frac{\partial \psi_{\text {incident }}(x=0, t)}{\partial x}+\frac{\partial \psi_{\text {reflected }}(0, t)}{\partial x}=\frac{\partial \psi_{\text {transmited }}(0, t)}{\partial x}
\end{array}
$$

Boundary conditions

$$
\begin{array}{cc}
y(x=0-, t)=y(x=0+, t) & \psi_{\text {incident }}(x=0, t)+\psi_{\text {reflected }}(0, t)=\psi_{\text {transmitted }}(0, t) \\
\frac{\partial y}{\partial x}(x=0-, t)=\frac{\partial y}{\partial x}(x=0+, t) & \frac{\partial \psi_{\text {incident }}(x=0, t)}{\partial x}+\frac{\partial \psi_{\text {reflected }}(0, t)}{\partial x}=\frac{\partial \psi_{\text {transmitted }}(0, t)}{\partial x}
\end{array}
$$

$$
A+A^{\prime}=A^{\prime \prime}
$$

$$
k_{1}\left(A-A^{\prime}\right)=k_{2} A^{\prime \prime}
$$

$$
\begin{aligned}
& A+A^{\prime}=A^{\prime \prime} \\
& k_{1}\left(A-A^{\prime}\right)=k_{2} A^{\prime \prime}
\end{aligned}
$$

$$
r=\frac{A^{\prime}}{A}=\frac{k_{1}-k_{2}}{k_{1}+k_{2}} \quad \text { reflection amplitude }
$$

$$
t=\frac{A^{\prime \prime}}{A}=\frac{2 k_{1}}{k_{1}+k_{2}} \quad \text { transmission amplitude }
$$

Special cases:

1) $k_{1}=k_{2} \Rightarrow \quad A^{\prime}=0, t=\frac{A^{\prime \prime}}{A}=1 \quad$ No reflection
2) $k_{1}<k_{2} \quad \Rightarrow A^{\prime}$ is negative \quad Reflected wave $=-\left|A^{\prime}\right| \sin \left(\omega t+k_{1} x\right)=\left|A^{\prime}\right| \sin \left(\omega t+k_{1} x+\pi\right)$ i.e. PHASE CHANGE at rare-dense boundary $\quad\left(k_{1}<k_{2} \Rightarrow \rho_{1}<\rho_{2}\right) \quad[\mathrm{v}=\omega / k=\sqrt{T / \rho}]$
3) $k_{1}>k_{2} \quad \Rightarrow A^{\prime}$ is positive
4) $\rho_{2} \rightarrow \infty \Rightarrow \quad k_{2} \rightarrow \infty \quad r=\frac{A^{\prime}}{A} \rightarrow-1 \quad \mathrm{~T} \rightarrow 0 \quad$ No wave in very heavy string

Energy flux at boundaries

Power flux $\quad P=\frac{1}{2} T \omega k A^{2}$ (Energy flow per unit time)

Incident power flux
$P_{I}=\frac{1}{2} T \omega k_{1} A^{2}$
Reflected power flux
$P_{R}=\frac{1}{2} T \omega k_{1} A^{\prime 2}$
Transmitted power flux
$P_{T}=\frac{1}{2} T \omega k_{2} A^{\prime 2}$
$R_{P}=\frac{P_{R}}{P_{I}}=\frac{A^{\prime 2}}{A^{2}}=r^{2}=\left(\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right)^{2} \quad$ Coefficient of reflection
$T_{P}=\frac{P_{T}}{P_{I}}=\frac{k_{2} A^{\prime \prime 2}}{k_{1} A^{2}}=\frac{k_{2}}{k_{1}} t^{2}=\frac{k_{2}}{k_{1}}\left(\frac{2 k_{1}}{k_{1}+k_{2}}\right)^{2}=\frac{4 k_{1} k_{2}}{\left(k_{1}+k_{2}\right)^{2}} \quad$ Coefficient of transmission
$R_{P}+T_{P}=\left(\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right)^{2}+\frac{4 k_{1} k_{2}}{\left(k_{1}+k_{2}\right)^{2}}=\frac{k_{1}^{2}+2 k_{1} k_{2}+k_{2}^{2}}{\left(k_{1}+k_{2}\right)^{2}}=1 \quad$ Conservation of energy

Summary

ค Continuity of y and $\partial y / \partial x$ at the boundary $x=0$ determines the amplitudes of the reflected and transmitted waves in terms of the amplitude of the incident wave as a function of the wave numbers k_{1} and k_{2} :

$$
r=\frac{k_{1}-k_{2}}{k_{1}+k_{2}} \quad ; \quad t=\frac{2 k_{1}}{k_{1}+k_{2}}
$$

© Energy transport across the boundary:

$$
\begin{gathered}
R \equiv \frac{\text { reflected flux }}{\text { incident flux }}=r^{2} \quad \text { reflection coefficient } \\
T \equiv \frac{\text { transmitted flux }}{\text { incident flux }}=\frac{k_{2}}{k_{1}} t^{2} \quad \text { transmission coefficient } \\
1=R+T
\end{gathered}
$$

