
Lecture 4

Waves

♦ Phase velocity and group velocity. Dispersion.

♦ Energy and transport of energy by a wave



Information transmission  

Plane wave does not convey information - must be modulated 

e.g. 

  
y = Asin kx !"t( ),

  
kx !"t #"T / 2

kx !"t >"T / 2= 0,

Rate if information transfer : velocity of envelope … “GROUP VELOCITY” 

To construct this modulated wave need a wave packet made up of an 

infinite number of frequencies - Fourier series (2nd year topic) 

y(x,t) = D
n
cos k

n
x !"

n
t( )

n=1

N

#

c.f. speed of individual waves of definite frequency … “PHASE VELOCITY” v=
!

n

k
n

"

#$
%

&'



Group and phase velocity 

Group velocity, g....... g =
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t1
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Phase velocity, v.....  e.g. v =
L1

t1

(Since many frequencies need not be the same  

as the group velocity)  
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Non-dispersive medium 
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Dispersive medium 
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e.g  Light through glass prism 

Different colours ! different angles, because the  

refractive index µ (= c/v) depends on colour (!),  

i.e.v depends on !. 

Dispersion: variation of wave speed with frequency
(or wave number)



Simple example : superposition of two waves 
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• Superposition of travelling waves y1(x, t) and y2(x, t):

y1 = A sin[(k + δk)x− (ω + δω)t] , y2 = A sin[(k − δk)x− (ω − δω)t]

• Using sinα+ sinβ = 2 sin[(α+ β)/2] cos[(α− β)/2], the resultant wave is

y = y1 + y2 = 2A sin(kx− ωt) cos(δk x− δω t)

♠ 1st factor sin varies with frequency ω and wave number k,

i.e., close to the original waves y1 and y2,

and corresponding speed v = ω/k (phase velocity).

♠ 2nd factor cos varies much more slowly,

with frequency δω and wave number δk

⇒ amplitude modulation, moving at speed vg = δω/δk (group velocity).

The modulating envelope encloses a group of short waves.

For δω , δk → 0 , vg =
dω

dk



To construct a finite pulse need a superposition of an  

infinite number of waves of different frequencies  

If distribution is peaked around  ! , k

 

Phase velocity v !
!
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Group velocity g =
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 (velocity of envelope)

In a dispersive medium pulse spreads out 

… but mean position moves with group velocity  

N .B. g ! c

In a non-dispersive medium pulse maintains its shape d!
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because of dispersion, i.e., dv/dk nonzero
distinction between g and v arises  

There are many equivalent expressions for the group velocity: 
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• Waves travelling through a dispersive medium:

group velocity vg =
dω

dk
=

d(vk)
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= v + k

dv
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= v +
2π

λ

dv

dλ

(

−λ2

2π

)

= v − λ
dv

dλ

EXAMPLE

• Suppose the dispersion relation v = v(λ) is given by

v2 = c2 + λ2ω2

0

Then 2v dv = 2λ dλ ω2

0
, i.e.
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v
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v
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v
=⇒ vgv = c2

product of phase and group velocities equals c2



Example: waves in deep water

v ∝
√
λ , i.e. v =

C√
k

with C constant

Since v = ω/k, then ω/k = C/
√
k

⇒ ω = C
√
k

Therefore g =
dω

dk
=

C

2
√
k

=
1

2
v

• group velocity is half the phase velocity:

component wave crests run rapidly through the group,

first growing in amplitude and then disappearing



Energy of vibrating string 

y = Asin kx !"t( )
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(integer l   wavelengths)



Energy of vibrating string 

y = Asin kx !"t( )
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Kinetic Energy 

Potential Energy 

  

PE  in stretched string element = T ! l " !x( ) = T!x 1+
! y

!x

#
$%

&
'(

2

"1

#

$
%
%

&

'
(
(
)

1

2
TA2k 2 cos2 kx "*t( )!x

v =! / k = T / " ! Tk
2
= "# 2 !  PE=KE! (Example of virial theorem)  

  

KE =
1

2
!A

2" 2
cos

2
kx '#"t( )

x

x+ l$

% dx ' =
1

2
!A

2" 2 &
l$
2

KE / l! =
1

4
"A2# 2

PE=
1

2
TA

2
k
2

cos
2
kx '!"t( )dx '

x

x+ l#

$ PE / l! =
1

4k
TA

2
k
2

  

!2
y

!x
2
=
"

T

!2
y

!t
2
#

1

c
2

!2
y

!t
2



Note

kinetic energy per unit length :
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Total energy per wavelength, E/!= KE+PE=
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