The Wave Equation

\diamondsuit The method of characteristics

\diamondsuit Inclusion of boundary conditions

 \diamondsuit Traveling waves and stationary waves

TRANSVERSE OSCILLATIONS OF AN ELASTIC STRING

- uniform linear density ρ
- small displacements y

• $T_1 \cos \theta_1 = T_2 \cos \theta_2$ for small θ , $\cos \theta \simeq 1 \implies T_1 = T_2 = T$

•
$$\rho \,\delta x \,\frac{\partial^2 y}{\partial t^2} = T \sin \theta_2 - T \sin \theta_1$$

$$\sin \theta \simeq \tan \theta \simeq \frac{\partial y}{\partial x} \implies \rho \, \delta x \, \frac{\partial^2 y}{\partial t^2} = T \underbrace{\left[(\frac{\partial y}{\partial x})_2 - (\frac{\partial y}{\partial x})_1 \right]}_{(\partial^2 y / \partial x^2) \delta x + \dots}$$

Thus $\rho \frac{\partial^2 y}{\partial t^2} = T \frac{\partial^2 y}{\partial x^2}$ i.e., $\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$, $c^2 \equiv \frac{T}{\rho}$

wave equation

2nd-order linear PDEs

 $A(x, y)u_{xx} + 2B(x, y)u_{xy} + C(x, y)u_{yy} + D(x, y)u_x + E(x, y)u_y + F(x, y)u = R(x, y)u_{yy} + C(x, y)u_{yy} + D(x, y)u_{yy} + E(x, y)u_{yy} + F(x, y)u_{yy} + F(x, y)u_{yy} + E(x, y$

- $B^2 AC < 0$ elliptic. Ex.: Laplace eqn. $u_{xx} + u_{yy} = 0$
- $B^2 AC = 0$ parabolic. Ex.: diffusion eqn. $u_t \alpha u_{xx} = 0$
- $B^2 AC > 0$ hyperbolic. Ex.: wave eqn. $u_{tt} c^2 u_{xx} = 0$

♦ General solutions of PDEs depend on arbitrary functions
 (analogous to solutions of ODEs depending on arbitrary constants)
 → boundary conditions to determine such functions

• Cauchy boundary conditions: assign function u and normal derivative $\partial u/\partial n$ on given curve γ in xy plane

(relevant to hyperbolic PDEs)

D'Alembert's solution	$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$
Change variables	u = x - ct $v = x + ct$
	$\frac{\partial}{\partial x} = \frac{\partial u}{\partial x} \frac{\partial}{\partial u}$

$$\frac{\partial}{\partial x} = \frac{\partial u}{\partial x}\frac{\partial}{\partial u} + \frac{\partial v}{\partial x}\frac{\partial}{\partial v} = \frac{\partial}{\partial u} + \frac{\partial}{\partial v}$$
$$\frac{\partial}{\partial t} = \frac{\partial u}{\partial t}\frac{\partial}{\partial u} + \frac{\partial v}{\partial t}\frac{\partial}{\partial v} = -c\frac{\partial}{\partial u} + c\frac{\partial}{\partial v}$$

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} \implies \left(\frac{\partial}{\partial u} + \frac{\partial}{\partial v}\right)^2 y = \frac{1}{c^2} \left(-c\frac{\partial}{\partial u} + c\frac{\partial}{\partial v}\right)^2 y = \left(\frac{\partial}{\partial u} - \frac{\partial}{\partial v}\right)^2 y$$
$$\implies \frac{\partial^2 y}{\partial u \partial v} = 0 \qquad \text{f, g arbitrary functions}$$
General solution $y(u,v) = f(u) + g(v) \quad i.e. \quad y(x,t) = f(x-ct) + g(x+ct)$

• The curves in the xt plane

x - ct = const.

x + ct = const.

are called the *characteristics* of the wave equation.

CHARACTERISTICS

Consider the PDE $Ay_{tt} + 2By_{tx} + Cy_{xx} + Dy_t + Ey_x + Fy = R$

$$Q = \begin{pmatrix} A & B \\ B & C \end{pmatrix} \quad \text{matrix of 2nd} - \text{order coefficients}$$

• <u>Characteristics</u> of the above PDE are defined as the curves $\chi(t,x) = \text{const.}$

such that their normal n is rotated by 90° by Q or is annihilated by Q, i.e., $n \cdot Q \ n = 0$.

• Since $n \propto \nabla \chi$, for characteristics $\nabla \chi \cdot Q \nabla \chi = 0$.

$$\triangleright \quad \underline{\text{Example.}} \quad \text{Wave eqn.} : -\frac{1}{c^2}y_{tt} + y_{xx} = 0 \implies Q = \begin{pmatrix} -1/c^2 & 0\\ 0 & 1 \end{pmatrix}$$

The curves $\chi_{\mp}(t,x) = x \mp ct = \text{const.}$ are the characteristics of the wave equation because

$$\nabla \chi_{\mp} = \begin{pmatrix} \mp c \\ 1 \end{pmatrix} \Rightarrow \nabla \chi \cdot Q \ \nabla \chi = (\mp c \ 1) \begin{pmatrix} -1/c^2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mp c \\ 1 \end{pmatrix} = (\mp c \ 1) \begin{pmatrix} \pm 1/c \\ 1 \end{pmatrix} = 0$$

• The condition $\nabla \chi \cdot Q \ \nabla \chi = 0$ implies, using $\nabla \chi = (\chi_t, \chi_x)$, that

$$\begin{pmatrix} \chi_t & \chi_x \end{pmatrix} \begin{pmatrix} A & B \\ B & C \end{pmatrix} \begin{pmatrix} \chi_t \\ \chi_x \end{pmatrix} = 0 ,$$

i.e.,
$$A\chi_t^2 + 2B\chi_t\chi_x + C\chi_x^2 = 0$$
.

Expressing the derivatives in terms of $x'(t) = -\chi_t/\chi_x$,

$$A[x'(t)]^2 - 2Bx'(t) + C = 0.$$

A Hyperbolic eqns. $(B^2 - AC > 0)$ have 2 families of characteristics

A Parabolic eqns.
$$(B^2 - AC = 0)$$
 have 1 $(Q \nabla \chi = 0)$

• Elliptic eqns. $(B^2 - AC < 0)$ have none

Uses of characteristics

• Characteristics $\chi_{\mp}(t, x) = \text{const.}$ can be used to solve hyperbolic equations by means of the transformation of variables

 $u = \chi_{-}(t, x)$

 $v = \chi_+(t, x)$

▷ Example: D'Alembert solution of the wave equation

 Characteristics serve to analyze whether boundary value problems for PDEs are well posed.
 ▷ Example: Cauchy conditions on curve γ well-defined provided γ is not a characteristic

[Cauchy-Kovalevska theorem]

Cauchy boundary conditions and characteristics

Consider the PDE $Ay_{tt} + 2By_{tx} + Cy_{xx} = H(y_t, y_x, y, t, x)$

• Cauchy conditions: Suppose y and the normal derivative y_n are assigned on the curve γ specified by

G(t, x) = 0

 \triangleright The normal and tangential directions to γ are $n \propto \nabla G = (G_t, G_x)$, $\tau \propto (-G_x, G_t)$.

 \triangleright Given y on γ , we can compute tangential derivative y_{τ} . From y_n and y_{τ} we can get y_t and y_x .

• Can we determine higher derivatives as well?

$$\frac{\partial}{\partial \tau} y_t = \tau \cdot \nabla \ y_t \propto \left(-G_x \quad G_t \right) \begin{pmatrix} y_{tt} \\ y_{xt} \end{pmatrix} = -G_x y_{tt} + G_t y_{xt}$$
$$\frac{\partial}{\partial \tau} y_x = \tau \cdot \nabla \ y_x \propto \left(-G_x \quad G_t \right) \begin{pmatrix} y_{tx} \\ y_{xx} \end{pmatrix} = -G_x y_{tx} + G_t y_{xx}$$

 \Rightarrow 3 linear equations in y_{tt} , y_{tx} , y_{xx} , with unique solution if det $\neq 0$

$$\det \begin{pmatrix} A & 2B & C \\ -G_x & G_t & 0 \\ 0 & -G_x & G_t \end{pmatrix} \neq 0$$

$$\Rightarrow AG_t^2 + 2BG_tG_x + CG_x^2 \neq 0$$

That is, Cauchy conditions on curve γ are well-defined provided γ is not a characteristic

D'Alembert's solution

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} \qquad \Rightarrow \quad y(x,t) = f(x-ct) + g(x+ct)$$

f and g are determined by the initial conditions:

Suppose at time t = 0, the wave has an initial displacement U(x) and an initial velocity V(x)

$$y(x,0) = f(x) + g(x) = U(x)$$

$$\frac{\partial y(x,0)}{\partial t} = -cf'(x) + cg'(x) = V(x) \implies f(x) - g(x) = -\frac{1}{c} \int_{b}^{x} V(x') dx'$$

$$f(x) = \frac{1}{2}U(x) - \frac{1}{2c} \int_{b}^{x} V(x') dx'$$

$$g(x) = \frac{1}{2}U(x) + \frac{1}{2c} \int_{b}^{x} V(x') dx'$$

$$y(x,t) = \frac{1}{2} [U(x-ct) + U(x+ct)] + \frac{1}{2c} [\int_{b}^{x+ct} V(x) dx - \int_{b}^{x-ct} V(x) dx] = \frac{1}{2} [U(x-ct) + U(x+ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} V(x) dx$$

Ex. Wave with initial rectangular displacement released from rest, V(x) = 0

$$y(x,t) = \frac{1}{2} \left[U(x-ct) + U(x+ct) \right]$$

$$\left(y(x,t) = \frac{1}{2} \left[U(x-ct) + U(x+ct)\right] + \frac{1}{2c} \int_{x-ct}^{x+ct} V(x) dx\right)$$

This figure can also be represented on an (x,t) domain. Let y(x,t) be pointing out of the paper.

In regions 1, 2, and 3, y(x,t) = 0 for all x, t

In region 5,
$$y(x,t) = \frac{1}{2}u(x-ct)$$
 $-a \le x-ct \le a$
In region 4, $y(x,t) = \frac{1}{2}u(x+ct)$ $-a \le x+ct \le a$
In region 6, $y(x,t) = \frac{1}{2}[u(x-ct)+u(x+ct)]$ $x-ct > -a$
 $x+ct < a$

This figure can also be represented on an (x,t) domain. Let y(x,t) be pointing out of the paper.

In regions 1, 2, and 3, y(x,t) = 0 for all x, t

In region 5,
$$y(x,t) = \frac{1}{2}u(x-ct)$$
 $-a \le x-ct \le a$
In region 4, $y(x,t) = \frac{1}{2}u(x+ct)$ $-a \le x+ct \le a$
In region 6, $y(x,t) = \frac{1}{2}[u(x-ct)+u(x+ct)]$ $x-ct > -a$
 $x+ct < a$

$$y(x,t) = f(x-ct) + g(x+ct)$$

What is the form of f(x), g(x)?

$$y(x,t) = f(x-ct) + g(x+ct)$$

If time dependence is $\cos(\omega t)$ the full (x,t) dependence is given by

1	Velocity	Wavelength	Period	Angular
	-	•		frequency
$A\sin(kx-\omega t)$	ω / k	$2\pi / k$	$2\pi/\omega$	ω
$A\sin k\left(x-vt\right)$	v	$2\pi / k$	$2\pi / vk$	vk
$A\sin\left[2\pi\left(\frac{x}{\lambda}-\frac{t}{\tau}\right)\right]$	λ / τ	λ	τ	2π / τ
$A\sin\left[2\pi\left(x-vt\right)/\lambda\right]$	V	λ	λ / v	$2\pi v/\lambda$

We can write the equation of a travelling wave in a number of analogous forms:

N.B. Can include phase most easily by putting $y(x,t) = \operatorname{Re}\left[A \exp\left[i(kx - \omega t)\right]\right]$ where A is complex.

N.B.2 Sometimes more convenient to switch x and t, i.e. $y(x,t) = A \sin(\omega t - kx)$ This is still a travelling wave moving to the right.

For non-sinusoidal wave moving to right with speed v, can always write as f(x-vt).

More generally

$$y = A\sin(kx - \omega t + 2\delta_1) + A\sin(kx + \omega t + 2\delta_2)$$
$$= 2A\sin(kx + \delta_1 + \delta_2)\cos(\omega t + \delta_1 - \delta_2)$$

Electromagnetic waves

$$\nabla \times \nabla \times \vec{E} = -\nabla^{2}\vec{E} + \nabla(\nabla \cdot \vec{E})$$
$$-\nabla \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial \nabla \times \vec{B}}{\partial t} = -\frac{1}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}}$$
$$\nabla^{2}\vec{E} = \frac{1}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}}$$

$$\overrightarrow{\nabla}.\overrightarrow{E} = 0$$
$$\nabla.\overrightarrow{B} = 0$$
$$\nabla \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$
$$\nabla \times \overrightarrow{B} = \frac{1}{c^2} \frac{\partial \overrightarrow{E}}{\partial t}$$

EM plane wave $\vec{E} = \vec{E}(z)$

Transverse wave

Polarisation

$$E_{x} = A\sin(kx - \omega t)$$
$$E_{y} = B\sin(kx - \omega t + \phi)$$

A	В	ϕ	Polarisation state	
1	0	-	Linear	\rightarrow
0	1	-	Linear	Î
1	1	0	Linear	7
1	1	π	Linear	<u>۲</u>
1	1	π/2	Circular	(LH)
1	1	$-\pi/2$	Circular	(RH)

