The Wave Equation

> The method of characteristics

> Inclusion of boundary conditions

{» Traveling waves and stationary waves



TRANSVERSE OSCILLATIONS OF AN ELASTIC STRING
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2nd-order linear PDEs

Az, y)Uze +2B(x, y)uzy +C(2,y)uyy +D(2, y)us +E(x, y)uy, +F(z,y)u = R(x,y)

e B> — AC <0 elliptic. Ex.: Laplace eqn. ug, + u,,, =0
e B° — AC =0 parabolic. Ex.: diffusion eqn. u; — attzy = 0

e B2 — AC >0 hyperbolic. Ex.: wave eqn. us — c?ugy =0

> General solutions of PDEs depend on arbitrary functions
(analogous to solutions of ODEs depending on arbitrary constants)

—— boundary conditions to determine such functions

e Cauchy boundary conditions:
assign function u and normal derivative du/On on given curve v in xy plane

(relevant to hyperbolic PDEs)
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General solution y(u,v)=f(u)+g(v) ie.

y(x,t) = f(x— ct)+g(x+ ct)




e The curves in the zt plane

xr — ct = const.

T + ct = const.

are called the characteristics of the wave equation.

X—Ct=consit.

\

X

\ X+ct=const




CHARACTERISTICS

Consider the PDE Ay + 2By + Cypr + Dy + Ey, + Fy = R

A B
Q = ( B C’) matrix of 2nd — order coeflicients

e Characteristics of the above PDE are defined as the curves

x(t, x) = const.
such that their normal n is rotated by 90° by ) or is annihilated by @), i.e.,
n-Q n=~0.

e Since n « VY, for characteristics Vy-Q Vy = 0.

1 —1/c* 0
> Example. Wave eqn. : — S Ytt T Yoz = 0 = Q= ( O/c 1)
c

The curves x1(t,z) = « F ct =const. are the characteristics of the wave equation because

VXq::(:FlC) = Vx-Q Vx = (Fc 1)(_10/62 (1)> (:EC>=(HFC 1)(i11/c>=0



e The condition Vy - Q Vx =0 implies, using Vx = (X, Xz), that

(X Xx)(é g) (Z) —0,

ie., Ax? +2Byixs+Cx2=0.

Expressing the derivatives in terms of 2/ (t) = —x¢/ Xz,

Alz' ()] = 2B2'(t) +C =0 ..

# Hyperbolic eqns. (B? — AC > 0) have 2 families of characteristics
# Parabolic eqns. (B? — AC = 0) have 1 (Q Vx = 0)
# Elliptic eqns. (B? — AC < 0) have none



Uses of characteristics

e Characteristics x(t,x) = const. can be used to solve hyperbolic equations
by means of the transformation of variables

U = X_(t,ﬂj)

v = X-i-(t: ZC)

> Example: D'Alembert solution of the wave equation

e Characteristics serve to analyze whether boundary value problems
for PDEs are well posed.
> Example: Cauchy conditions on curve v well-defined
provided v is not a characteristic

[Cauchy-Kovalevska theorem]



Cauchy boundary conditions and characteristics

Consider the PDE Ay + 2Byte + CYse = H(Yt, Yo y, T, )

e Cauchy conditions: Suppose y and the normal derivative y,,
are assigned on the curve v specified by

G(t,z) =0

> The normal and tangential directions to v are n « VG = (Gt,Gz), T x (—Gy, Gt).
> Given y on ~, we can compute tangential derivative y-. From vy,, and y- we can get y; and y,

e Can we determine higher derivatives as well?

0
a_yt =7V Yt X (_Gaz Gt) (ytt ) — _Gazytt + tha:t
T Yxt
(9 Ytz
8_yfc =7V Yy X (_Gaz Gt) — _Gazyt:c + thazaz
T Yzx

= 3 linear equations in ¥4, Yz, Yoz, With unique solution if det £ 0



A 2B C
det —Gx Gt 0 # 0
0 -G, Gy

= AG? +2BG;G, + CG2 # 0

That is, Cauchy conditions on curve v are well-defined
provided v is not a characteristic



D’Alembert’s solution

d’y 1%

ey = y(x,t)zf(x—ct)+g(x+ct)

f and g are determined by the initial conditions:

Suppose at time ¢ = 0, the wave has an initial displacement U(x) and an 1initial velocity V' (x)

c

21 [X]Etl/(x)dx _ xfty(x)dx] = %[U(x— ct)+U(x+ ct)]+ %Ttlf(x)dx




Ex. Wave with initial rectangular displacement released from rest, Vix)=0

c

y(x) = [U(x-er) + U x4 er)] y<x,r>=§[U<x—cz>+v<x+ct>1+2ixfV<x>dx]

t=3al2c

t=ale
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This figure can also be represented on an (x,7) domain. Let y(x,7) be pointing out of the
paper.

In regions 1, 2, and 3, y(x,r) =0 forall x, 7

In region 5, y(x,r)Z%u(x—ct) —a<x—ct<a
In region 4, y(x,r):éu(x+cf) —a<x+ct<a
In region 6, y(x,t):%[Il(x—cr)+11(x+cr)] x—ct>-a

xt+ct<a



This figure can also be represented on an (x,7) domain. Let y(x,7) be pointing out of the
paper.

In regions 1, 2, and 3, y(x,r) =0 forall x, 7

In region 5, y(x,t)zéu(x—ct) —a<x-ct<a
In region 4, y(x,r):éu(x+cf) —a<x+ct<a
In region 6, y(x,t):%[Il(x—cr)+zl(x+cr)] x—ct>-a

xt+ct<a



y(x,t) = f(x— ct)+g(x+ cz‘)

What is the form of f(x), g(x)?




y(x,t) = f(x— ct)+g(x+ cz‘)

If time dependence is cos(wt) the full (x,7) dependence is given by

y(x,H)=Acos(kx + @t) + Bcos(kx — wt)

0 constant k
® Speed of wave c=—
Il o T= n
e Frequencyf=—=— Yo _I ®
T >

NV

2 —
® Wavelength A = f y(x,1) A= -

k is "wavenumber" K j X




We can write the equation of a travelling wave in a number of analogous forms:

Velocity Wavelength Period Angular
frequency
Asin(kx—a)t) w/k 2w/ k 2w/ W )]
Asink(x—vt) % 2r/k 2/ vk vk
: X t AlT A T 2w /T

Asin| 2| ———

AT
Asin[Zﬂ:(x—vt)/l] v A Alv 2nv/ A

N.B. Can include phase most easily by putting
y(x,t)= Re[A exp I:i (hox —a)t)ﬂ

where A4

1s complex.

N.B.2 Sometimes more convenient to switch x and ¢, i.e.
y(x,t)=Asin (ot — kx)
This 1s still a travelling wave moving to the right.

For non-sinusoidal wave moving to right with speed v, can always write as f (x—vt).




Stationary waves

y= Asin(kx — a)t) + Asin(kx + a)t)

= 2 Asin kx cos wt

“stationary wave”

More generally

y= Asin(kx—a)t+ 251)+ Asin(kx-l— a)t+252)
= 2Asin(kx +0, + 52)cos(a)t+ 0, — 52)



Electromagnetic waves

Maxwell’s equations (free space) TVE: 0
VB=0
vxE=-98
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EM plane wave E = E(z)
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Transverse wave



Polarisation

E, = Asin(kx — ot)
E = Bsin(kx — ot + ¢)
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