
The Wave Equation

♦ The method of characteristics

♦ Inclusion of boundary conditions

♦ Traveling waves and stationary waves
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2nd-order linear PDEs

A(x, y)uxx+2B(x, y)uxy+C(x, y)uyy+D(x, y)ux+E(x, y)uy+F (x, y)u = R(x, y)

• B2 − AC < 0 elliptic. Ex.: Laplace eqn. uxx + uyy = 0

• B2 −AC = 0 parabolic. Ex.: diffusion eqn. ut − αuxx = 0

• B2 −AC > 0 hyperbolic. Ex.: wave eqn. utt − c2uxx = 0

♦ General solutions of PDEs depend on arbitrary functions

(analogous to solutions of ODEs depending on arbitrary constants)

−→ boundary conditions to determine such functions

• Cauchy boundary conditions:

assign function u and normal derivative ∂u/∂n on given curve γ in xy plane

(relevant to hyperbolic PDEs)



D’Alembert’s solution 
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u = x ! ct

v = x + ct
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y u,v( ) = f u( ) + g v( ) i.e. y x,t( ) = f x ! ct( ) + g x + ct( )General solution 

f, g   arbitrary functions 



• The curves in the xt plane

x− ct = const.

x+ ct = const.

are called the characteristics of the wave equation.

x−ct=const.

x

t

x+ct=const.



CHARACTERISTICS

Consider the PDE Aytt + 2Bytx + Cyxx +Dyt + Eyx + Fy = R

Q =

(

A B

B C

)

matrix of 2nd− order coefficients

• Characteristics of the above PDE are defined as the curves

χ(t, x) = const.

such that their normal n is rotated by 90◦ by Q or is annihilated by Q, i.e.,

n ·Q n = 0.

• Since n ∝ ∇χ, for characteristics ∇χ ·Q ∇χ = 0.

⊲ Example. Wave eqn. : −
1

c2
ytt + yxx = 0 ⇒ Q =

(

−1/c2 0

0 1

)

The curves χ∓(t, x) = x∓ ct =const. are the characteristics of the wave equation because

∇χ∓ =

(

∓c

1

)

⇒ ∇χ ·Q ∇χ = (∓c 1 )

(

−1/c2 0

0 1

)(

∓c

1

)

= (∓c 1 )

(

±1/c

1

)

= 0



• The condition ∇χ ·Q ∇χ = 0 implies, using ∇χ = (χt, χx), that

(χt χx )

(
A B

B C

)(
χt

χx

)

= 0 ,

i.e., Aχ2
t + 2Bχtχx + Cχ2

x = 0 .

Expressing the derivatives in terms of x′(t) = −χt/χx,

A[x′(t)]2 − 2Bx′(t) + C = 0 .

♠ Hyperbolic eqns. (B2 −AC > 0) have 2 families of characteristics

♠ Parabolic eqns. (B2 −AC = 0) have 1 (Q ∇χ = 0)

♠ Elliptic eqns. (B2 −AC < 0) have none



Uses of characteristics

• Characteristics χ∓(t, x) = const. can be used to solve hyperbolic equations

by means of the transformation of variables

u = χ−(t, x)

v = χ+(t, x)

⊲ Example: D’Alembert solution of the wave equation

• Characteristics serve to analyze whether boundary value problems

for PDEs are well posed.

⊲ Example: Cauchy conditions on curve γ well-defined

provided γ is not a characteristic

[Cauchy-Kovalevska theorem]



Cauchy boundary conditions and characteristics

Consider the PDE Aytt + 2Bytx + Cyxx = H(yt, yx, y, t, x)

• Cauchy conditions: Suppose y and the normal derivative yn
are assigned on the curve γ specified by

G(t, x) = 0

⊲ The normal and tangential directions to γ are n ∝ ∇G = (Gt, Gx), τ ∝ (−Gx, Gt).

⊲ Given y on γ, we can compute tangential derivative yτ . From yn and yτ we can get yt and yx.

• Can we determine higher derivatives as well?

∂

∂τ
yt = τ · ∇ yt ∝ (−Gx Gt )

(
ytt

yxt

)

= −Gxytt +Gtyxt

∂

∂τ
yx = τ · ∇ yx ∝ (−Gx Gt )

(
ytx

yxx

)

= −Gxytx +Gtyxx

⇒ 3 linear equations in ytt, ytx, yxx, with unique solution if det 6= 0



det





A 2B C

−Gx Gt 0

0 −Gx Gt



 6= 0

⇒ AG2
t + 2BGtGx + CG2

x 6= 0

That is, Cauchy conditions on curve γ are well-defined

provided γ is not a characteristic
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f  and g are determined by the initial conditions:

Suppose at time t = 0, the wave has an initial displacement U(x) and an initial velocity V (x) 
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y x,t( ) = f x ! ct( ) + g x + ct( )

What is the form of f (x), g(x)?



If time dependence is cos ! t( )  the full x,t( )  dependence is given by 

  
y x,t( ) = f x ! ct( ) + g x + ct( )
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We can write the equation of a travelling wave in a number of analogous forms: 

 Velocity Wavelength Period Angular 

frequency 
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N.B. Can include phase most easily by putting 

( ) ( ), Re expy x t A i kx t!& '= "& '0 10 1  

 where A  is complex. 

 

N.B.2 Sometimes more convenient to switch x and t, i.e. 

( ) ( ), siny x t A t kx!= "  

 This is still a travelling wave moving to the right. 

 

For non-sinusoidal wave moving to right with speed v, can always write as ( )f x vt! .  
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