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® The Wave Equation

Transverse displacements of an elastic string of linear density (kg/m) p
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This is a WAVE EQUATION with velocity ¢ =+/T/p
(hence larger tension or lighter string leads to faster waves)



Remarks

e Style of analysis similar to study of N oscillating masses on a string;

instead of N coordinates y,(t), p=1,..., N
now we have y(x,t), x = continuous variable

e Motion given by partial differential equation (PDE) in x and t:

the wave equation.
2nd-order linear PDE of hyperbolic type with constant coefficients

e Recall from N oscillators case: onset of wave behavior from
looking at sinusoidal dependence on p



2nd-order linear PDEs

Az, y)Uze +2B(x, y)uzy +C(2,y)uyy +D(2, y)us +E(x, y)uy, +F(z,y)u = R(x,y)

e B> — AC <0 elliptic. Ex.: Laplace eqn. ug, + u,,, =0
e B° — AC =0 parabolic. Ex.: diffusion eqn. u; — attzy = 0

e B2 — AC >0 hyperbolic. Ex.: wave eqn. us — c?ugy =0

> General solutions of PDEs depend on arbitrary functions
(analogous to solutions of ODEs depending on arbitrary constants)

—— boundary conditions to determine such functions

e Cauchy boundary conditions:
assign function u and normal derivative du/On on given curve v in xy plane

(relevant to hyperbolic PDEs)



D’Alembert’s solution

Change variables u=x-—ct
v=Xx+ct
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General solution y(u,v) = f(u) + g(v) ie. y(x,t) = f(x — ct) + g(x + ct)




{ D'Alembert realizes that y,, = ¢ *yy implies that
y is a function of x — ct + a function of x + ct

O Interpretation of D'Alembert analysis in terms of traveling waves:

e Take e.g. the part of the solution y = f(x — ct).
At time t =t y(x,t1) = f(x — cty)
At time ty > t1: y(x,ta) = f(x — cty) = flx — cty — c(ta — t1)]
flle —clte — 1)) — cty]
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l.e., y at time ¢, and position x is the same as y was

at time ¢; and position 2/ = & — ¢(ty — t1) shifted leftwards
= wave has traveled to the right with speed c



Travelling waves y(x,t) = f(x — ct)
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Travelling waves y(x,t) = g(x + ct)

yx,0) 1

/N )

v

Wave moves to left with speed ¢
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Summary

e transverse displacements y(x,t) of elastic string

—> wave equation 1, = C_Qytt

e hyperbolic 2nd-order linear PDE

e solution of wave equation y(x,t) = f(x — ct) + g(x + ct)

ANV4

traveling waves

e next: determine f and g from initial conditions



