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Transverse displacements of an elastic string of   linear density (kg/m)  
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Resolve vertical forces 
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The Wave Equation 
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This is a WAVE EQUATION with  velocity 
  
c = T / !  

(hence larger tension or lighter string leads to faster waves) 

!



Remarks

• Style of analysis similar to study of N oscillating masses on a string;

instead of N coordinates yp(t), p = 1, . . . , N
now we have y(x, t), x = continuous variable

• Motion given by partial differential equation (PDE) in x and t:

the wave equation.
2nd-order linear PDE of hyperbolic type with constant coefficients

• Recall from N oscillators case: onset of wave behavior from
looking at sinusoidal dependence on p



2nd-order linear PDEs

A(x, y)uxx+2B(x, y)uxy+C(x, y)uyy+D(x, y)ux+E(x, y)uy+F (x, y)u = R(x, y)

• B2 − AC < 0 elliptic. Ex.: Laplace eqn. uxx + uyy = 0

• B2 −AC = 0 parabolic. Ex.: diffusion eqn. ut − αuxx = 0

• B2 −AC > 0 hyperbolic. Ex.: wave eqn. utt − c2uxx = 0

♦ General solutions of PDEs depend on arbitrary functions

(analogous to solutions of ODEs depending on arbitrary constants)

−→ boundary conditions to determine such functions

• Cauchy boundary conditions:

assign function u and normal derivative ∂u/∂n on given curve γ in xy plane

(relevant to hyperbolic PDEs)



D’Alembert’s solution 
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u = x ! ct

v = x + ct

Change variables 
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y u,v( ) = f u( ) + g v( ) i.e. y x,t( ) = f x ! ct( ) + g x + ct( )General solution 

f, g   arbitrary functions 



♦ D’Alembert realizes that yxx = c−2ytt implies that
y is a function of x− ct + a function of x+ ct

♦ Interpretation of D’Alembert analysis in terms of traveling waves:

• Take e.g. the part of the solution y = f(x− ct).

At time t = t1: y(x, t1) = f(x− ct1)

At time t2 > t1: y(x, t2) = f(x− ct2) = f [x− ct1 − c(t2 − t1)]

= f [(x− c(t2 − t1)
︸ ︷︷ ︸

x′

)− ct1]

i.e., y at time t2 and position x is the same as y was

at time t1 and position x′ = x− c(t2 − t1) shifted leftwards
⇒ wave has traveled to the right with speed c



  
y x,t( ) = f x ! ct( )Travelling waves 
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y x,t( ) = g x + ct( )Travelling waves 
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Summary

• transverse displacements y(x, t) of elastic string

−→ wave equation yxx = c−2ytt

• hyperbolic 2nd-order linear PDE

• solution of wave equation y(x, t) = f(x− ct) + g(x+ ct)

տ ր

traveling waves

• next: determine f and g from initial conditions


