Normal Modes, Wave Motion and the Wave Equation

Hilary Term 2012

Lecturer: F Hautmann

- Part A: Normal modes (\sim 4 lectures)
 - Part B: Waves (\sim 8 lectures)

- printed lecture notes
- slides will be posted on lecture webpage: http://

www-thphys.physics.ox.ac.uk/people/FrancescoHautmann/Cp4p/

suggested problem sheets also on webpage

References

Textbooks covering aspects of this course include

[1] French: Vibrations and Waves, MIT Introductory Physics Series

[2] Coulson and Jeffrey: Waves, Longman

A. Normal modes

1 Systems of linear ordinary differential equations

2 Solution by normal coordinates and normal modes

3 Applications to coupled oscillators

B. Waves

- > Partial differential equations (PDEs).

 - > Traveling waves. Stationary waves.
- Dispersion. Phase and group velocities.
- > Reflection and transmission of waves.

Introduction to Normal Modes

- Consider a physical system with N degrees of freedom whose dynamics is described by a set of coupled linear ODEs.
- To determine the $normal\ modes$ of the system means to find a set of N coordinates ($normal\ coordinates$) describing the system which evolve independently like N harmonic oscillators.
 - The frequencies of such harmonic motion are the *normal frequencies* of the system.

▷ normal modes describe "collective" motion of the system▷ general solution expressible as linear superposition of normal modes

SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

- more than 1 unknown function: $y_1(x), y_2(x), \ldots, y_n(x)$
 - set of ODEs that couple y_1, \ldots, y_n
- > physical applications: systems with more than 1 degree of freedom. dynamics couples differential equations for different variables.

Example. System of first-order differential equations:

$$y_1' = F_1(x, y_1, y_2, \dots, y_n)$$

$$y_2' = F_2(x, y_1, y_2, \dots, y_n)$$

. .

$$y_n' = F_n(x, y_1, y_2, \dots, y_n)$$

♦ Systems of linear ODEs with constant coefficients can be solved by a generalization of the method seen for single ODE:

General solution = PI + CF

Complementary function CF by solving system of auxiliary equations

ightharpoonup Particular integral PI from a $set\ of\ trial\ functions$ with functional form as the inhomogeneous terms

Example. Solve

$$\frac{d^2x}{dt^2} + \frac{dy}{dt} + 2x = 2\sin t + 3\cos t + 5e^{-t}$$

$$\frac{dx}{dt} + \frac{d^2y}{dt^2} - y = 3\cos t - 5\sin t - e^{-t}$$
given
$$\dot{x}(0) = 2; \quad y(0) = -3$$

$$\dot{x}(0) = 0; \quad \dot{y}(0) = 4$$

To find CF

Set $x = Xe^{\alpha t}$, $y = Ye^{\alpha t}$

$$\Rightarrow \frac{(\alpha^2 + 2)X}{\alpha X} + \frac{\alpha Y}{(\alpha^2 - 1)Y} = 0 \Rightarrow \alpha^4 = 2$$
$$\Rightarrow \alpha^2 = \pm \sqrt{2} \Rightarrow \alpha = \pm \beta, \pm i\beta \quad (\beta \equiv 2^{1/4})$$

and $Y/X = -(\alpha^2 + 2)/\alpha$ so the CF is

$$\begin{pmatrix} x \\ y \end{pmatrix} = X_a \begin{pmatrix} \beta \\ 2 + \sqrt{2} \end{pmatrix} e^{-\beta t} + X_b \begin{pmatrix} -\beta \\ 2 + \sqrt{2} \end{pmatrix} e^{\beta t}$$

$$+ X_c \begin{pmatrix} i\beta \\ 2 - \sqrt{2} \end{pmatrix} e^{-i\beta t} + X_d \begin{pmatrix} -i\beta \\ 2 - \sqrt{2} \end{pmatrix} e^{i\beta t}$$

To Find PI

Set
$$(x, y) = (X, Y)e^{-t}$$
 \Rightarrow

$$\begin{array}{ccc} X - Y + 2X = 5 \\ -X + Y - Y = -1 \end{array} \Rightarrow \begin{array}{c} X = 1 \\ Y = -2 \end{array} \Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$$

Have $2\sin t + 3\cos t = \Re(\sqrt{13}e^{i(t+\phi)})$, where $\cos \phi = 3/\sqrt{13}$, $\sin \phi = -2/\sqrt{13}$. Similarly $3\cos t - 5\sin t = \Re(\sqrt{34}e^{i(t+\psi)})$, where $\cos \psi = 3/\sqrt{34}$, $\sin \psi = 5/\sqrt{34}$ Set $(x,y) = \Re(X,Y)e^{it}$ and require

$$-X + iY + 2X = X + iY = \sqrt{13}e^{i\phi} iX - Y - Y = iX - 2Y = \sqrt{34}e^{i\psi}$$
 \Rightarrow $-iY = \sqrt{13}e^{i\phi} + i\sqrt{34}e^{i\psi} iX = 2i\sqrt{13}e^{i\phi} - \sqrt{34}e^{i\psi}$

so
$$x = \Re(2\sqrt{13}e^{i(t+\phi)} + i\sqrt{34}e^{i(t+\psi)})$$

$$= 2\sqrt{13}(\cos\phi\cos t - \sin\phi\sin t) - \sqrt{34}(\sin\psi\cos t + \cos\psi\sin t)$$

$$= 2[3\cos t + 2\sin t] - 5\cos t - 3\sin t$$

$$= \cos t + \sin t$$

Similarly

$$y = \Re(\sqrt{13}ie^{i(t+\phi)} - \sqrt{34}e^{i(t+\psi)})$$

$$= \sqrt{13}(-\sin\phi\cos t - \cos\phi\sin t) - \sqrt{34}(\cos\psi\cos t - \sin\psi\sin t)$$

$$= 2\cos t - 3\sin t - 3\cos t + 5\sin t$$

$$= -\cos t + 2\sin t.$$

For the initial-value problem

$$PI(0) = \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} \quad ; \quad \dot{P}I(0) = \begin{pmatrix} -1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$

$$CF(0) = \begin{pmatrix} 2 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad ; \quad \dot{C}F(0) = \begin{pmatrix} 0 \\ 4 \end{pmatrix} - \begin{pmatrix} 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Therefore the solution satisfying the initial data is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cos t + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \sin t + \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}.$$

Normal Modes

Coupled differential equations - e.g. coupled pendula

$$m\ddot{x} = -mg\frac{x}{l} + k(y - x)$$

$$m\ddot{y} = -mg\frac{y}{l} - k(y - x)$$

Solution I - Matrix method :

$$\begin{pmatrix}
\frac{d^2}{dt^2} + \frac{g}{l} + \frac{k}{m} & -\frac{k}{m} \\
-\frac{k}{m} & \frac{d^2}{dt^2} + \frac{g}{l} + \frac{k}{m}
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix}$$

$$\begin{pmatrix} -\omega^2 + \frac{g}{l} + \frac{k}{m} & -\frac{k}{m} \\ -\frac{k}{m} & -\omega^2 + \frac{g}{l} + \frac{k}{m} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -\omega^2 + \frac{g}{l} + \frac{k}{m} & -\frac{k}{m} \\ -\frac{k}{m} & -\omega^2 + \frac{g}{l} + \frac{k}{m} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$A.\Psi = 0$$
 $\Rightarrow Det[A] = 0$

Eigenvalue equation

$$\begin{vmatrix} -\omega^2 + \frac{g}{l} + \frac{k}{m} & -\frac{k}{m} \\ -\frac{k}{m} & -\omega^2 + \frac{g}{l} + \frac{k}{m} \end{vmatrix} = 0$$

$$\left(-\omega^2 + \frac{g}{l} + \frac{k}{m}\right)^2 - \left(\frac{k}{m}\right)^2 = 0 \qquad \Rightarrow \left(-\omega^2 + \frac{g}{l} + \frac{k}{m}\right) = \pm \left(\frac{k}{m}\right)$$

$$\left(-\omega^2 + \frac{g}{l} + \frac{k}{m}\right) = \pm \left(\frac{k}{m}\right)$$

Eigenvalue equation

$$\omega_1^2 = \frac{g}{l}$$
 or $\omega_2^2 = \frac{g}{l} + 2\frac{k}{m}$

Eigenvalues

$$\begin{pmatrix} x \\ y \end{pmatrix} = \operatorname{Re} \begin{pmatrix} X \\ Y \end{pmatrix} e^{i\omega t} \implies \begin{pmatrix} -\omega^2 + \frac{g}{l} + \frac{k}{m} & -\frac{k}{m} \\ -\frac{k}{m} & -\omega^2 + \frac{g}{l} + \frac{k}{m} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Eigenvector equation

$$\underline{\omega} = \underline{\omega}_1 : \begin{pmatrix} +\frac{k}{m} & -\frac{k}{m} \\ -\frac{k}{m} & +\frac{k}{m} \end{pmatrix} \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies X_1 = Y_1 = A_1 e^{i\phi_1}$$
 Eigenvectors

$$\left(-\omega^2 + \frac{g}{l} + \frac{k}{m}\right) = \pm \left(\frac{k}{m}\right)$$

Eigenvalue equation

$$\omega_1^2 = \frac{g}{l}$$
 or $\omega_2^2 = \frac{g}{l} + 2\frac{k}{m}$

Eigenvalues

$$\begin{pmatrix} x \\ y \end{pmatrix} = \operatorname{Re} \begin{pmatrix} X \\ Y \end{pmatrix} e^{i\omega t} \implies \begin{pmatrix} -\omega^2 + \frac{g}{l} + \frac{k}{m} & -\frac{k}{m} \\ -\frac{k}{m} & -\omega^2 + \frac{g}{l} + \frac{k}{m} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Eigenvector equation

$$\underline{\omega} = \underline{\omega}_{2} \quad \begin{pmatrix} -\frac{k}{m} & -\frac{k}{m} \\ -\frac{k}{m} & -\frac{k}{m} \end{pmatrix} \begin{pmatrix} X_{2} \\ Y_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \quad X_{2} = -Y_{2} = A_{2}e^{i\phi_{2}}$$
 Eigenvectors
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} A_{2} \cos(\omega_{2}t + \phi_{2})$$
 2nd Normal mode

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} A_2 \cos(\omega_2 t + \phi_2)$$

$$m\ddot{x} = -mg\frac{x}{l} + k(y - x)$$

$$m\ddot{y} = -mg\frac{y}{l} - k(y - x)$$

General solution given by a superposition of the two independent (normal mode)solutions:

$${x \choose y} = {1 \choose 1} A_1 \cos(\omega_1 t + \phi_1) + {1 \choose -1} A_2 \cos(\omega_2 t + \phi_2)$$

Normal Modes

Summary

 \Diamond method of solution for single ODEs extended to systems of coupled differential equations

General solution = PI + CF

♦ coupled pendula:

- 2 linear ODEs in $x(t), y(t) \longrightarrow 2$ normal frequencies ω_1 , ω_2 at which system can oscillate as a whole.
- $\Rightarrow x + y \text{ and } x y \text{ oscillate } independently \text{ at frequencies } \omega_1 \text{ and } \omega_2$ $(normal \ modes)$
- ullet any generic motion of the system is linear superposition of normal modes : $\mathsf{GS} = c_1 \ \mathsf{NM1} + c_2 \ \mathsf{NM2}$