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This course of twelve lectures covers material for the paper CP4: Differential Equations,
Waves and Optics of the Preliminary Examination in Physics, and Moderations in Physics
and Philosophy. Textbooks covering aspects of this course include “Waves” by C.A. Coulson
and A. Jeffrey, Longman, and “Vibrations and Waves” by A.P. French, MIT Introductory

Physics Series, Many thanks to P.G. Irwin and G.G. Ross for providing their notes for this
course.

Part1 NORMALMODES - - =~
1 Introduction

Many physical systems require more than one varizble to quantify their configuration;
for example a circuit may have two connected current loo ps, 50 one needs to know

what current is flowing in each loop at each moment. Another example is a set of N
coupled pendula each of which is a one-dimensional (1-D) oscillator. A set of

differential equations— one for each variable — will determine the dynamics of such a
system.

For a system of N coupled 1-D oscillators there exist N “normal modes” in which all
oscillators move with the same frequency and thus have fixed amplitude ratios (if
each oscillator is allowed to move in =D, then eV normal modes exist). The normal
mode is for whole system. Even though uncoupled angular frequencies of the
oscillators are not the same, the effect of coupling is that all bodies can move with the
same frequency, If the initial state of the system corresponds to motion in a normal
mode then the oscillations .continue in the normal mode. However in general the
motion is described by a linear combination of all the normal modes; since the

differential equations are linear such a linear combination is also a solution to the
coupled linear equations.

The existence and nature of normal modes is best illustrated by some examples so we ,
first turn to the solution of coupled linear equations. ’

2 Solution of coupled linear differential equations with constant coefficients.
Consider a set of differential equations that are linear and have constant coefficients,

The procedure for solving them is a minor extension of the procedure for solving a
single linear differential equation with constant coefficients. The steps are:

-
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1. Arrange the equations so that terms on the left are all proportional to an unknown
variable, and already known terms are on the right.

2. Find the general solution of the equations that are obtained by setting the right

sides to zero. The result of this operation is the Complementary function (CF). For:

oscillatory solutionsthe CF is found by replacing the unknown variables by multiples
_of € (if ¢ is the independent variable) and solving the resulting algsbraic equations.

3. Find a particular integral by putting in a trial solution for each term ~ polynomial,
exponentlal etc. — on the right hand side.

3 Coupled Pendula

The first example of coupled linear differential equations is provided by two coupled '
pendula. Consider two massless rods of length /, which have bobs of mass m attached .
to the end, which are themselves connected by a spring.

Assumptions:
1) Assume that spring obeys Hooke’s law and thus that the restormg force vaties
linearly with extension, i.e. F=k(y—x) ,

2) Assume the dlsplacements from equilibrium positions are small such that the ”
restoring force due to gravity for each pendulum is approximately given by

mgtand = mg-’l£ and acts along the line of masses. The equations of motion

are then: :
mk=-mgx/[+ k(y— x)

Imji=—mgy/l—k(y—-x) _ | (3.1)
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3.1 Matrix method of solution

We start with the general method of solution that applies to all coupled linear
differential equations. As we will discuss there may be more direct methods in special
cases. We first implement step 1 to write the equations of motion for the coupled

pendula in a standard form
—3&+(—§-—£Jx+—]£y= 0
I m m

k k
——x—j5+[—§——]y= 0
m [ m
where the unknown variables are to the left. In this case there are no driving terms so -
the right hand side is zero. These equations may be written as a matrix equation

- (32)

& (g k k
g e R (NN
m m
DR e
k & (g k\j\y) \0
— —— — ._..+_
m dr? I m
or
Ax=0 (3.4)

. Y :
Since the RHS is zero we are only interested in finding the CF. We look: for normal
mode solutions where all elements oscillate with the same frequency. Particularly for
cases in which both first and second order derivatives are present (as is the case for
damped oscillators discussed below) it is best to solve the associated complex
equation. Writing

where x is the column vector (xj and A the square symmetric matrix in Eq.(3.3).

x=Re(Y =Xe") (3.5)

(x
X—(Y)  (3.6)

and substituting into Eq. 13 we find, since the differential operators are real, the
associated complex equation is given by

where

AY=0 G.7
where '
oi-| &Lk L3
I m m
A= (3.8)
L3 o -| ELE
m [ m
or, equivalently, dividing by the factor ¢
AX=0 3.9)
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The solutions of Eq.(3.9) are either X =0, which is not very interesting, or the
determinant of the matrix A must be equal to zero. Hence

w? - §+£ ._k_
I m m

=0 (3.10)

leading-to-the-“eigenvalue-equationZ:——

% —<(§+—1‘-J =k 3.11)
I m m
From this we see that there are two normal mode frequencies, ®,,, corresponding to
the two independent solutions of the coupled differential equations, given by
W =~g/l

®,=+g/1+2k/m

(the £ ambiguity associated with the square root gives rise to the same sinusoidal
solutions and so is ignored here). To complete the solution we need to find the normal
mode amplitudes. These are found by solving Eq.(3.9) for X, substituting each of the
normal mode frequencies inturn. For @ = @, we have

(3.12)

+k £

m ml|(X%) (0

m ml&]_(Y

kLk (YHOJ G139
m .m)

This 'det'er'mines the ratio of X, to ¥, giving

)

with A, ¢, the real amplitude and phase. Similarly for 0 = @,

ok k ‘ ' '

- T X 0 '

m mi 4|

ko k (YJ(OJ G:19)
m m ’

giving

(‘1{2]= Azei¢z (jlj (3.16)

Finally, since x = Re(Xe"“”) we have the two “normal mode” solutions

X, = (illj 4, ,cos(@, ,+ ) (3.17)

and hence, since the differential equations are linear, we can use the principle of
superposition to write the general solution as a linear combination of the two normal

mode solutions .
1, 1
X:[;J:(IJAlCOS(COlZ‘-HDl)'F(_IJAZ cos(w2t+¢2) (3.18)
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The advantage of the matrix method is its general applicability, and the ease with
which it may be applied to systems with more than two normal modes. The advantage
of using the complex exponential is only evident if there is a mixture of single and
double derivatives as in the case of a damped pendulum discussed below. In the
undamped case just discussed it would be equally simple to start with a normal mode
trial solution proportional to cos(w? +¢) .

3.2 Alternative methods of solution: Normal coordinates or Deéoupling

The equations of motion for the coupled pendula are given by Eq.(3.1), rewritten here
for convenience
mi=-mgx/l+kly—x
g (y ) (3.19)

mj)=-—mgy/l—k(y—x)
For simple coupled oscillator systems it is often possible to find the normal modes
directly by taking obvious linear combinations of the equations of motion to obtain
decoupled differential equations. These may then be independently solved for a linear
combination of the position variables, in this case x and y. If this can be done it
considerable simplifies the solution. The coupled pendula just discussed provides a
simple example of this. If we add Eqs.(3.19) we find: '

m(2+5)= —ﬂl%(x+ ») (320)
or | ’
4=-7q (321)

where q; is a normal coordinate here equal to g, = (x+ y) / \5 (The normalisation
factor 1/+/2 is chosen 1 give a standard form for the kinetic enefgy when expressed
in terms of the normal modes — see Eq.(3.41)).

Eq.(3.21) describes simple harmonic motion which may be trivially solved to give:
=24 cos(a+9) (3.22)

wherem, = \/g/is the first normal frequency found earlier and we have chosen the

integration constants to agree with those found using the matrix method.
Similarly, if we subtract Eqs.(3.19) we find:

m(3- )= —ﬁ;—g-(x— y);zk(x— ) (3.23)
or " .
6= (g +35‘-qu (3.24)
I m

where g, is another normal coordinate, equal to g, =(x— y)/ «/5 . Eq.(3.24) also
describes simple harmonic motion and thus

g, =24,c08(,t +9,) (3.25)
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wherew, = Jg! I+2k / m is the second normal frequency found earlier.

To extract the original position variables x and y we note that x = (q1 + qz) / \/5 and
y=(q]—q2)/\/5 and hence |
x(t) = Alcos(mlt + ¢1) + 4, cos(w2t+ q)z)

J’(t): AIGQS(mlegbl)-—Azcos(w2t+¢2) (3.26)

which is identical to the general solutions Eq.(3.18) derived by the matrix method.

From this is easy to identify the motion corresponding to the normal modes. For the
case only the first normal mode is excited A, =0and the motion is shown in the

figure below showing the two masses move together.

Lt L
R ]

|

R

Normal mode 1

The second normal mode corresponds to the case A =0 and for it the masses move

in opposite directions.

— «— =
Normal Mode 2

This method of solution can lead to quick solutions for the normal frequencies if the
suitable linear combination of parameters can be spotted. For simple cases like this it
is easy but not for more complicated systems. This technique is also known as
decoupling.

3.3 Initial conditions

The values of the integration constants A, ¢, are determined from the initial

conditions of the system. As is shown in the following examples this can lead to a
single normal mode being excited or to a combination of normal modes.
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Example (a) — Normal Mode Excitation

Suppose that at ¢ = 0, x = a, y = g and the masses are initially at rest. Equating the
initial positions to Egs.(3.26) implies:
x(O) = A4 cosd + 4 cos¢, =a
y(O):Alcosd)l—Azcos%:a ‘
which implies A cos¢, = a, 4, cos¢, = 0. Equating the initial velocities to zero gives
#(0)= 4o, sing, + 4,0,sing, =0

(3.27)

, . : (3.28)
7(0)= 40, sing, - 4w, sing, =0
giving A =a, A, =0,¢,=0. Hence the solution for #>0 is
x=acoswt
(3.29)
y=acosat

and thus, ¢.f. Eq.(3.26), we see that only the first normal mode is excited, which is to
be expected given the initial displacements. In addition, once in this normal mode, the
system will remain in it indefinitely.

Example (b) — Normal Mode Excitation

Suppose that at t = 0, x = y = 0, and the masses are given initial velocities
% =-v,y=v. This implies

(0 4 cosp, + Az'cosgb2 =0

X =
y(O) = Alcosfqb1 —4,c080,=0 (3:30)
#(0)= 40, sing, + 4@, sing, =-v '
_)')(O) = Aw,sing, — 4,0,sing, =v
giving A, =0,4,= _col’ ¢, = 0 and thus the subsequent motion is:
2
v,
x= —E)—sm w1t
2 (3.31)
y= 2 sin w,t

2
Thus, c.f. Eq.(3.26), we see that these initial conditions excite the second normal
mode only, in which the system will remain.
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The motion in these two normal modes may also be summarised by the following
figure: ,

!
X
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VvV VT
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where here the coupling is such that the frequency of the 2™ mode is hlgher than that
of the first.

[

"’

e

Example ¢ — Non-Normal Behaviour — Beéats

Suppose that at £ = 0, x = @, y = 0 and the masses are initially at rest. This requires

x(O) = 4 cos@, + 4,co8¢, =a

y(O) = 4 cos¢, — 4, cosgp, =0 3 SQ)
#(0)= Ao, sing, + 4w,sing, =0 '
jz(O) = Ao sing, - 4,0,sing, =0
giving A, =4, = %, ¢, = ¢, = 0. Hence the solution for z> 0 is
a a
% =008 o+ Ecosmzt
- (3.33)

_4a a
y= EGOS COlf'—-z"COS G)zt

and thus both normal modes are excited. The solution for both x and y is then
determined by the beating of the two terms with normal frequencies @ and ;.

3.4 Beats

Egs.(3.33) can be re-written using standard trigonometrical identities as:
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x= acos(w‘ o, t)cos(w’ ! t] = aco's(&') t)cos(AaJ t/2)
2 2
. +o, ). |0~ =
J’:asm(w‘2 zt]sm( ‘2 2tjfa51n(wt)51n(Awt/2)

where 5=-@1;ﬂand Aw=w,-®,. The form of x and y is shown in the figures

(3.34)

below for the case Ad << ®.
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one complete period of the envelope equals two beats.

3.5 Energy of Motion

Decoupling, to express the result in terms of normal modes, is also instructive when
the energy of the system is considered. Consider first the potential energy, V(x,y), of

the coupled oscillators. Consider the forces acting on particle 1 which, c¢.f. Eq.(3.19),
are given by —mgx/[+ k( y—x). This force may be written in terms of a partial

derivative with respect to x of a potential V(x,3):

—mgx/l+k(y—x)=—%‘7; (3.35)
X
Integrating this we find: '
_mg o 1. . o
V=rx ok —ky+£(») (3.36)

where fis an unknown function of y.
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The force, —mgy/ l—'k( y—x) , acting on particle 2 may be similarly be obtained
from the potential energy giving

—nxgy/l-k(y—-x)'-r—-zg—r;-: —-% ' | 3.37)

where we have used Eq.(3.36) to compute the partial derivative. Integrating this
equation determines f(y) and inserted in Bq.(3.36) gives the total kinetic energy of
the system (up to an undetermined constant)
1 (g ka2, 2
Ve=-m &+—= + = kx 3.38
, Zm(l mJ(x y) y (3.38)
Consider now the kinetic energy K. This is given simply by:

= 1 2, a2 ‘ ;
| KA-E;.‘n(x +5) (3.39)
While the expression for X is straightforward; that for V' is rather more complex.
However if we substitute for the normal coordinates: x= (q1 +q2) / \/—2- and

y= (q] - qz) / \/5 , then the V'may be re-expressed as:

4 =%m%q12 +%m(%+2€-}1§
mJ (3.40)

1 1 54
=‘2—'H1Cl)12ql2 +§mw§q§
where ; and @, are the normal mode angular frequencies. Similarly XK may be
rewritten as: : '

K =%m(qf +q§) | | (3.41)

and the total energy is then:

1 1 | Y
E= %mcofgf + -2—771.(0241; + mg’ + > mg}

= (% mwlq® + % mqlzJ + [% molq: + % mqu (3.42)

v=2
=E+E,= ZE”
N .
One may see from Egs.(3.40),(3.41) and (3.42) that the energies separate into the
individual energies of two decoupled simple harmonic oscillators corresponding to the -
motion of the two normal modes. The is an example of Parseval’s theorem which

states that the total energy of the system is the sum of the energies of the normal
modes.
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4 Further examples of coupled oscillators

4.1 Spring-mass systems

As a next example of calculation of normal modes in mechanical systems with multiple
degrees of freedom, we consider the system pictured below, consisting of two identical
masses m constrained to move along a straight line on a smooth table under the action of
three springs:

ak k ak

The middle spring connecting the two masses has elastic constant k; the end springs are
fastened to fixed supports and have elastic constant ak, where « is a real number. Let the
displacements of the two masses from equilibrium be u; and us.

Let us now a) write down the equations of motion of the system; b) determine the
normal frequencies and normal modes of the system; c) express the energy of the system
in terms of normal modes; d) solve motion for initial conditions u; = ug, uz = 0, u; = 0,
g = 0.

The equations of motion are given by the two coupled 2nd-order linear differential
equations '

mily = —aku; — k(uy — ug)
mip = —akug + k(u; — ug) .
If we now sum and subtract the two equations, and introduce new coordinates
Ug + Ug
S = ) 1
7 \ (1)
U — U2
D= , 2
7 (2)
we get .
mS+akS=0,

mD+ (a+2kD =0 .
These are two decoupled equations of simple harmonic oscillators with frequencies

ak
wg = H ) (3)

wp =1/ 2L (@)
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Egs. (3),(4) give the normal frequencies of the system, and the normal coordinates in
Egs. (1),(2) identify its normal modes.
The general solution of the equations of motion is given by

S(t) = Cssin{wgt + ¢s) ,

D(t) = Cpsin(wpt + p) ,

that is, .
’U,l(i') = 72_‘

1 . .
up(t) = ﬁ [Cs sin(wst + pg) — Cp sin(wpt + ¢p)]

[Cs sin(wgt + pg) + Cp sin(wpt + ¢p)]

The kinetic energy and the potential energy of the system are given respectively by

K = % m (@ +43)
= %m (5% + D% ,
V = %akuf—l—%k(uz—ulf—l-%akug
= % akS? + % (a+2)kD?
= % mw3S? —i—% mwhD? .

The total energy is given by

E =

= E1+E2 ’

that is, the sum of the energies of each normal mode.
Given the initial conditions at time ¢ =0

up=1u , u=0, =0, uu=0,

the solution satisfying these conditions is given by

1
uy(t) = 5 Uo (coswgt + coswpt)

1
ug(t) = 5 Uo (coswgt — coswpt) .
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Example

Three equal masses m are constrained to move on a circle without friction, subject to the
action of three springs of elastic constant & connecting the three masses pairwise to each
other. The equations of motion of the system are

méll = —-k(ul — Uz) -+ k(’u,3 - 'LL]_) y
miy = —k(ug — ug) + k(uy —ug)
mily = —k(ug — u1) + k(ug — us) -

Determine normal frequencies and normal coordinates of the system.
Verify that the answer is given by

(.L)1=0,
3k
W =wWs =14/— ,
m
and 1
Q1=%(’U,1+’U,2+’U,3),
1

= —= (U3 — 2up +us) ,
g2 \/6(1 2+ us)

1

£

93=$ (ul—‘u2) .

4.2 Double pendulum

Consider the double pendulum in the figure below, consisting of a mass m; hanging by a
light string of length [ from a rigid support, and a second mass my hanging by an identical
string of length [ from m;. The pendulum is constrained to swing in a vertical plane. Let
the angle between the upper string and the vertical be 6, and that between the lower string
and the vertical be ¢. We consider the motion of the system for small angles about the
equilibrium position. Let us write down the equations of motion and determine the normal
modes of the system.

For 8, < 1 we have )
- myl*0 = —myglf + magl(¢ —0) |

TTLQZZ(é"}— Qi)) = —m29l¢ .
Eliminating 6 in the second equation by using the first equation, we get
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malf = —(ma +mg) g0 +magg
mald = —mage (14 Ma/m1) +magh (1+ma/mi) .

We can rewrite this pair of equations in matrix form as

(o) =5 (ol i) (6) -+ ©@

To find the normal modes of the double pendulum, look for solutions

(-G

and substitute Eq. (6) into Eq. (5). We get

<—w2 + (g/1)(m1 + ma)/my —(g/1)(ma/m1) ) ( 0o ) ~0
—(g/D)(mi+me)/m1  —w?+(g/D)(m1+mg)/mi) \ ¢o '

Then the normal frequencies are determined by

—w? 4 (g/1)(m1 + ma) /ma —(9/D)(ma/my) _
det ( —(g/D(m1+ma)/m1i  —w?+(g/l)(m +mz)/ml> =0

This gives

w® — (g/1)(m1 +ma) /my = £ (g/1)v/ma(my +ma) /my

that is,

w g L | (7)

i e — - . B
l 1:,-"1/m2/(m1+m2)

For m1 = mg, wy - y/(?:!: v2)g/l. For my > my, wy ~ w_ =~ 1/g/l, as my swings

nearly undisturbed by mo. For m; < my, wy — oo, and w- — /g/(2l), as my swings
nearly as from a string of length 2.



5.0 Coupled driven linear differential equations

We will next consider examples in which there is a driving term forcing the motion, following
the steps outlined in Sec. 2 when obtaining the solution. The example that follows appears
in chapter 5 of the lecture notes on Complex Numbers and Ordinary Differential Equations.
For completeness we reproduce it here.

Example 5.3
Solve
2z dy
T
d d? . -
-£—+E£——y=3c>ost—55mt-—e
To find CF
Set x = X%, y = Ye*?
(®+2)X + aY
aX + (a?-1)Y
= o?=%v2 = a==8 +if (B=2Y%)

I
Lol

+2z = 2sint + 3cost + 5~ z(0)=2 (0 3

. )
. BT a0 =0 3(0)

=0 = o*=2
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48

Chapter 5: Systems of linear diﬂ'erenti’a,l equations

and Y/X = —(a®+2)/a so the CF is

(zgj) =% (2+ﬁ\/§> e <2;€/§) &
+ X, <2 iﬁﬁ> e Pt 4 Xy (2:165> elft

Notice that the functions multiplying X, and X are complex conjugates of one
another. So if the solution is to be real X; has to be the complex conjugate of
X, and these two complex coefficients contain only two real arbitrary constants
between them. There are four arbitrary constants in the CF because we are solving
second-order equations in two dependent variables.

To Find PI
Set (z,y) = (X,Y)e™? =

X-Y+2X=5 X=1 :z;)_ 1\
X4V -Y=-1 = Y=-2 = (@/ _(—2>e‘

Have 2sint + 3 cost = Re(+/1361(t+9)), where cos ¢ = 3/v/13, sin¢ = —2/+/13.
Similarly 3 cost — 5sint = Re(v/34e!(t+9)), where cos ) = 3/+/34, siny = 5/+/34
Set (z,y) = Re[(X,Y)e"] and require
~X +1Y +2X = X 41V = v/13e!¢ L = V13e!? 4 {v/34e¥
X ~Y -Y =1X - 2V = v/34e" iX = 2iv/13e™ — /34e?

so

z = Re(2v/136!79) 1. 14/34¢1(H+¥))
= 2\/53(008 ¢ cost — sin ¢ sint) — v/34(sin® cost + cos sin t)
= 2[3cost + 2sint] — 5cost — 3sint
= cost +sint . '
Similarly

y = Re(v13ie!t+®) — /3ei(+4))

= v/13(—sin ¢ cost — cos psint) — +/34(cos 1 cost — sin)sint)
== 2cost — 3sint — 3cost 4 5sint
= —cost - 2sint.
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For the initial-value problem

0= (3)+(4)-(5) 5 m0-(3)+(3)= ()
CP(0) = (_:”‘3) -(%)- (5) & cFo)= (&)~ (91) - <8>

Therefore the solution satisfying the initial data is

()= (e (e (2
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5 Non-Identical Pendula, damped and with forced oscillations

Here we return to the coupled oscillator system to demonstrate how the matrix method
provides a solution to the general case when the decoupling method is not
straightforward to implement. '

Consider the non-identical coupled oscillator system below with a force Fcosat
acting on particle 1. Both bobs are also subject to a frictional force equal to y times
their velocity.

N

The equations of motion are:
mi=—yi-—mgx/l + k_(y—x)+ Fcosat

o 5.
my=-yy—megyll — k(y— x)
This is equivalent to the matrix equation
2
LIifnd) 2 1
m m m x .
1 i 1 1 ( ]=£( jRe(eml)(S.Z)
k @ yd (g k\)\W m\0
- Sttt
m, a® mydt \l, m,

The Complementary Function

The CF is found solving the equation with no driving term on the RHS. We look for
a normal mode solution of the form
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(el e

Substituting this in the LHS of the matrix equation leads to the associated complex
matrix equation

—*+iL o+ £k _k
m, R m X
. N 0 (54)
-— —w2+i—z-co+(§+—J
m, m, L m
The associated eigenvalue equation is
@ i+ §-+—k— _k
. m L m m,
y =0 (5.5)
-— . —co2+'i—7-w+(—g-+i)
m, ' m, L m

Solving this equation will give the normal mode frequencies. Finally substituting
these frequencies in turn in Eq.(5.4) determines the normal modes in the usual
manner. For the case of arbitrary masses and pendula lengths this matrix method is the
optimal one to find the normal frequencies as it is not possible simply to 1dent1fy the
normal co-ordinates and apply the decoupling method.

The Particular Integral

To find the particular integral we try

{0

Substituting this in the matrix equation the associated complex equation is

—a2+ila+[§-+-k—j _E p .
m m m
1 . 1 1 1 (Q)Elvﬂ):ﬂ(o)(sj)
m
- —oc2+i—7-a+(§+£j ‘
m, m, L, m,

where the factor €* has been divided out of both sides. The solution to this equation

is given by
P F(1
P=| |=M"— 5.8
(Q} m (O) C9
where
—oc2+i—7—oc+[—g—+—k-) _
mo-\l m m,
M= o (5.9)
-— —ocz+z'—y—a+(§+£j
m, m, 2 M

Finally the P is given by
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[xj =Re(M"f—(1]e"“‘J (5.10)
y m\ 0

This illustrates how the matrix method may be used to obtain the solution to the
general driven coupled pendula system. However evaluating the solution is
algebraically complicated so to illustrate the final steps we consider a relatively
simple case.

5.1 The case m, =m, =m, [ =1, =] - Matrix method

CF

In this case the eigenvalue equation, Eq.(5.5), becomes

(—w’+ilw+(§))[ew2+ilw+(§+—%&)j
m 0/ m I m,

. (5.1D
E’('—co2+a)f+ilco)(—coz+a)§+ilco)=0 ‘ -
, ~ m m
with solutions
2
- , Y 14
W12 = 1-2; + COIZ_2 - (En—zj ; (5:12)

where @, , are the normal frequencies for the case with no damping, c.f. Eq.(3.12).

For the case 0=0, corresponding to the first factor in Eq.(5.11) vanishing,

,(—5,2 + il-a-)l + %) = 0 the eigenvector equation becomes

m
k k
= == ,
m m _ . 31
Kk (Y)—O . (5.13)
m m

implying

£ aem(t] (5.14)
Y T '

Similarly one readily finds the case @ = . has its eigenvalues given by

X ol 1
y =4 (5.15)

Putting this all together we have the complémentary function

()-rel e (e ol e (o

- Ao T o0 ool -G
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PI

For this choice of masses and lengths the matrix given in Eq.(5.9) is now

—a2+ila+[-‘§:+£j _k
m m m
M= L (5.17)
-— a2+ila+(§+—)
m m I m
with inverse
a2+ila+[§+—]f—) X
-1 m m m
= (5.18)
DetM
“ X a2+zla+(§+£)
m m I m

where

DetM=(—a2+ila+(§D(—az+ila+(§+z—IiD (5.19)
m l m I m

It is convenient to rewrite this in the form

Det M=B,e™ Be™ (520
where ‘
2\12
B,= ((—az +w?, )2 + (-O%) J
/ (5.21)
—-ay/m
tan 91'2 = '_2-’}/—2——2—
(-0 + 0f,)

Then M™ may be rewritten as

M—] - ei(el +e1) Ble—iel + Bze—iez _Ble—iel + Bze—l'ez (5 22)
2Ble _Ble—igl + Bze—l'ez Ble_iel + Bze—iez .
5o finally, using Eq.(5.10) wehave |
X ~Re —F_ -ei(91+ez) eiau Ble'ie' +Bze..,'ez
y 27” B1B2 —-Ble_iel + Bze—iez .
(5.23)

_F ( Bjcos(at+86,)+ B, cos(az+6,)
" 2mB,B, \~B,cos(at +6,)+ B, cos(at +6,)
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S.2 The case m, =m, =m, [ =I,=1[ - Decoupling method

For this choice of masses and lengths the decoupling method provides another way of
identifying the normal modes and decoupling the differential equations for the driven
oscillators. It is instructive to comparé this to the matrix method. The coupled -

differential equations are
mX=-yi-mgxll + k(y—‘-x)-*— Fcosat

my=—yy-mgyll - k(y—x)
The first normal mode

Adding the equations gives

(x+y) = —-‘}E(x+y)—%;-(x+ y)+£—cosoct
or

g, +— r q]+ q1 \/E,mcosoct—TI;Re
CF

The auxiliary equation is

—o*+iLo+&=0
m l
with eigenvalues
: . \2
. .Y 2 ¥
W2 =i——=x, |0 = —
M om ! (Zm)

as we found using the matrix method. The CF is then

: y I
g, =24 2 cos [\/a)f - (—7—/—) + 6, }
2m

where g, =.—J’;(x+ y).
PI

To find the P.L put ¢, = Re:I:C1 exp(iat’)] then, ¢.f. Eq.(5 .21):

{—cx2+z’ozl jc Be™C =
m

\/—m

and thus

F
C = \/_Z—mBl exp(z'@l )

Hence the PI for the normal coordinate g; is given by:

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)
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F
= coslot+6 5.32
& \/imBl ( ]) ( )

The second normal mode

Subtracting the equations of motion (Eq.(5.24)) gives:

(55_5;)-;--”7:1-(;&—y)+§<x—y)+%(x—y)=%cosat (5.33)

or

(g 2k] F [ F . ]
g, +=—qg, +| =+— |g, = —=—cosar = Re| —=—-explict (5.34
zmz(l'mzxﬂm \/E)._m () )
where g, = 4=(x~)
CF

In a similar manner we readily find that the complementary function is given by

g, =TA cos[\/cog - (l) +6, J (5.35)
. 2m

PI

To find thé PLputg,= Re[C2 exp(ioat)] then:

(——cx’ + icxz-+-g—+ _Zﬁjcz = Bze’el C,= i (5.36)
m I m 2m
and thus
C,= F exp(ig, (5.37)
\/EmB2

Hence the normal coordinate ¢, is given by:

F
= cos| o + 5.38
% \/_2_mB2 ( ¢2) G389
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It is easy to solve for x and y giving

- y z n - ¥ 2
x=Ae *" cos \/C"xz‘(‘ﬂ) +.51J+Az€ 2 cos \/wf—('z';{) -l.~§2

+

F
1 cos(octjl‘ 6,)+ E_mE;COS‘(m + qbz)‘ .

_ZL’ 2 ! 'y : 3 —’zl'f 2 . 'y 2 .
y=Ae * cos| ,|o] - o +0, |=-4Ae 2 cos| ,|m; - o +6,

+
2

(5.39)

F F
cos{ait + 6, ) - ——cos{at +
B os{or+6) 2mB, (01+4,)
in agreement with the result obtained by the matrix method, Eqs.(5.16) and (5.23)

5.3 The case m, =m, =m, [ #1I,,no damping, no driving force.

The final example We shall consider is the case that the masses are equal and there is
no driving force but the pendula lengths differ. Fron Eq.(5.5) the eigenvalue equation

is .
o +(_s:+1<_] _E
C\d, o m m _
| =0 (5.40)
_E _mz+(§_;,£j
m l, m,
Putting: : B
A=gll+k/m=F+k/m
B=—kim (5.41)
C=gl/l+kim=B+k/im
gives

w?, = %[(ﬁf +) 42k I ms \/( B - p’;’y + (ék /m) J (5.42)

Substituting m, , in Eq.(5.4) determines the eigenvectors X = (;0) up to an overall
[¢]
constant: . .
X m 2 2
}Z_=_E];[(ﬁf - ﬁ:)i\/(ﬁf— B2) +(2k/ m) J - (5.43)

N.B. (x,/y,),for mode 1 and (x,/y, ), for mode 2 are related by:

[&) =_1/[&J = (5.44)
x, ), %y ),

The full solution is then given by
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x(¢)=(x}=(1] Dcos(cuit+6l)+(—1rJGcos(a)zt+52) (5.45)

y r

Suppose at £ = 0, x(O) = (x) = (g) and x = 0. Having zero initial velocities means
y B

x(0)= @ = Dm ¥ G(T) | (5..4.6)

which may be solved to give

that 6, =6, =0. Hence

x(t) = a[cos W+ r? cos a)zt] / (1+ rz)

y(t) = ar[cos w,t - cos coztj / (1 + rz) G47
This is a little more difficult to simplify but it can be shown that
() = asos(at)cos{ Aot 2) - G - )sin(a’)t)sin(Awt ) e

y(z‘) =2ar sin(@t)sin(Acut / 2) / (1 + ,.2)

From this one sees that le varies between a and (T%Ja and [ y] varies between 0

and [1? 5 ja . Hence, unlike the case for equal length pendula, there is an
r

incomplete transfer of energy. This is clear from the plot of

ool [ W [.{\ T
' NIt
- At
x(r) and y(1): I

Figure showing beats of non-identical pendula. Note the incomplete energy
transfer.

NM 24



5.4 Diagrammatic Representation of Normal Modes

The normal mode motion is specified by the ratio xo/p. We can represent this by a

unit-length vector v= (xoi + ¥, j) [ /%2 + y?2 . For the case of two normal modes there

are two vectors.

Consider case of non-identical pendula discussed in Section 5.3. In various limits
these eigenvalues defining the normal modes are given by

(@) Forkim —0 xoly. —
(b) For kim — e xp/yp. —

(c) Intermediate k/m

vy v,
—oo or 0
-1 or 1
o (8- B2 )= \/ (B2~ B2) +(2k/m)

The corresponding graphical representation is given by

')’o

a). v,

Yo

b).

Yo
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Normal Modes, Wave Motion and the Wave Equation

F. Hautmann
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Part2 WAVE MOTION AND THE WAVE EQUATION:
6 Introduction

The answer to the question “Why should we learn about waves” is simple; Waves are
everywhere! For example

Strings Violin

Membranes Drum

Air . Sound o

Optics Interference and diffraction

E.M. Radio, T.V., ...

Quantum mechanics Uncertainty principle
o " o~decay

Seismology Earthquakes’

In the physics course you will study many of these so it is important that you should
have a good understanding of the mathematical description of waves.

To start we will consider a simple case of a wave propagating along a string stretched
along the x-axis. The string can have transverse vibrations co rresponding to a
displacement in the y-direction given by y(x, ) at position x and time t. It is
instructive first to consider a case similar to those we have been studying in which a
system of masses on a stretched elastic string undergo transverse vibrations. '

7 Necoupled oscillators ~ °
7

Consider the transverse oscillations of & particles of mass m spaced equally along a
flexible, elastic, massless string, which is under tension T.

N . /
T a
—
T 'ﬂa, i @y "
[44 . .
L . \T\
") 1 2 3 e 2=1 p p+l o N N+1

(reproduced from French, 1971).



Assume the particles are displaced by small distances y; and thus the angles o, are
small too. In this case the length of the string between the particles is increased to
I'=1/cosa, =1 (1 +o 2) i.e. =] and the tension in the string remains constant.

Consider the p™ particle above. The force acting in the y-direction is

F=-Tsing, _ +Tsina, (7.1
whlch may be approximated by
T T
| F= -T(y yp_[) 7 (y,,+, - y,,) (7.2)
Hence the equation of motion of the p™ particle is
$,+20%y, - (%5 +y,.)=0 - (7.3)

where @} =T /ml. We can write a similar equation for each of the NV particles and
thus we have N coupled differential equations and thus N normal modes. The

solution is a linear combination of the normal modes and reads

-

N
_ . | pnmw ; .
Y, = 4 sin N+l (Dncosconz‘+Eﬂsmco"t) ‘ (7.4)
where
) ni
o =20, sinj ——— 7.5
nT I (N 1) (13

Itis mstructwe to consider what these norma] modes look like. For example for four
coupled osclllators (N—4)

(reproduced from French, 1971)

Clearly there 4 normal modes in all. Note thatn =6, 7, 8, 9 repeat patterns of
n=4,3,2,1 with opposite sign. This illustrates the start of the wave pattern, shown in
the diagram in white, that we shall see oceurs as N = oo when the continuous
distribution of masses becomes a string.



Derivation of Egs. (7.4),(7.5)
Here we obtain the solution (7.4)-(7.5) to the set of N coupled equations (7.3)
Up + 2030 — W5 (Upt1 +4p-1) =0, p=1,...,N

describing the motion of the N masses along the string. The ends of the string are held
fixed, corresponding to yo = yn+1 = 0.
We look for solutions of the form

Yp(t) = Re[Ype™"] . ey
Substituting this into the equations of motion, we obtain
(= + 208)Yp ~ wy (V41 + Y1) = 0,

that is,
Yori+Yp 1 —w? + 2wk @)
Y, o«

Here the right hand side is constant for any fixed w. The left hand side must be independent
of p. Note that '
Y, = Csinpf

satisfies this condition (for some suitable ), because it gives
Ypi1 + Yp—1 = Clsin(p + 1)8 + sin(p — 1)6] = 2C sinpf cos b ,

le.,
Y-
—Y;’H;; L =2cosf. (3)
The fixed-end condition yy4; = 0 requires sin(N + 1)8 = 0, that is,
=nr/(N+1) , ninteger. (4)
Therefore, on
) T
Y;,=C’s1nN+l. (5)
By identifying Eq. (2) and Eq. (3), with 6 given in Eq. (4), we get
' nm —w? + 2wk
2 = 9.
e e m e FOSN +.1. . wg [
Solving this for w, we determine the normal frequencies wy,:
) nw
Wp, = 2&)0 S m N
which is Eq. (7.5). Note that n here runs over n = 1,..., N, because for n = 0 and

n = N+1 all amplitudes (5) vanish, and for higher n we just reobtain the same frequencies,
e.g., WNt+2 = WN, WN+3 = Wn—1, and so on. Thus there are N normal frequencies.

The general solution can be written as a linear combination of the normal modes. Using
(1),(5), we have

N
. pnw
= t ,
Up ;cnsm N1 cos(wnt + ¢n)

which is the solution in Eq. (7.4).



8 The wave equation — Transverse waves on a string

The simplest example of wave motion is that of transverse displacements of an elastic
string. Consider the diagram of small portion of string (6, and 6, small). Suppose the
string has linear density (kg/m) p.

yAL

A 4

For small angle of displacement and transverse oscillations, as we discussed above,
the tension, T, is approxxmately constant along the string. Resolving the forces acting
on the portion of string in the y-direction we have, from Newton’s second law

az
Tsing, ~T'sing, = ( pé'x)

=7 @®.1)

For small angles sinf = tanf = ?-— and hence

X

1( oy y &y '
B o

The final step is to replace %V- by the leading terms in its Taylor series
¢

L o) 9 ,
(axj (ax]+ax(ax)6 o 83

Using this Eq.(8.2) becomes

Py o'y o N
T(S;c—z-j Ox = p-ét—ZEx (8.4)
and so we obtain the Wave Equation
' Py _pdy
8.5
o Tof 8.3

As we shall discuss this describes a wave moving with ve locity ¢ =+/T / p
(hence larger tension or lighter string leads to faster waves).



9 D’Alembert’s Solution

Following from Eq.(8.5) the wave equation is

2 2
Q_Jzi = -176__31 (9.1)
ox* ¢* o
This is most easily solved by changing variables to |
u=x-ct
9.2
v=x+ct ©-2)

The wave equation may then be written in terms of these new variables by application
of the chain rule. i.e. since y(x,t) = y(u,v)

Y o p¥
o OJudx Ovox

9.3
v .
du odv
similarly
Y yn
—eoZ g X -
du av
Differentiating again we find:
azy azy azy azy
—_—— = e — 9.5
o el ouv o (9:2)
and
?y Loty 2%y 'y
—= 2.2 + 9.6
o cbw v v )
Hence substituting into the wave equation we find
*y
=0 9.7
Judv . ©1)
from which we may deduce that
y(u,v)= f(u)+g(v) .8
or
y(x,t)=f(x—ct)+g(x+ct) .9

where fand g are any functions of » and v. This is the general solution to the wave
equation. The functions f and g are determined by the initial conditions as we shall

show in Section 9.3, However first let us consider the meaning of this solution.

9.1 Travelling waves

Let us illustrate the solution just obtained by choosing y(x,t) =f (x— ct) att=0 to
be a pulse centered at the origin.

y(x,0) '
Then at a later time ¢ = ¢, the pulse jemains the same shape but is translated to the
right by a distance ct;. : x
: >




y(x,t,)

T

Thus y(x,t) = f (x - ct) represents “travelling wave” moving to the right.
Now consider the case y(x,t) = g(x + ct) att=0tobea pulse centered at the origin

as in the first diagram. Then at ¢ = ¢, the pulse remains the same shape but is
translated to the left by a distance ct,.

(x,t,)

/\ X
! : —p

Thus y(x,t) = g(x + ct) represents “travelling wave” moving to the left.

9.2 D’ Alembert’s solution with boundary conditions

As 'we have just seen the functions 7 and g are determined by the initial conditions
of the wave. These can be incorporated in d’ Alembert’s solution in a straightforward
way. Suppose at time ¢ = 0, the wave has an initial displacement U(x) and an initial

velocity V(x) '

y(x,_O) = f(x) + g(x) = U(x) : (9:10)
PO o (e e () =7 (5 e
integrating Eq. (9:11) gives: ' | | | '
f(x)—g(x)=—%‘]‘V(x)dx } (9.]2)
Adding Eqs (9.10) and (9.12) leads to b
1 1 i
f(x)= EU(x)——Z?J.V(x)dx 9.13)

Subtracting Egs. Egs (9.10) and (9.12) leads to



X

1 1
g(x)=EU(x)+—2—c-J.V(x)dx (9.14)
b
Hence combining these to form y(x,f) we find:
o | X! X=¢f

y(x,z‘)=%[U(x~ct)+ U(x+cr)]+-21z J‘V(x)dx— J- V(x)de| (9.15)
y(x,z‘)=—§[U(_x—-cz‘)+U(x+cz‘)]+-21—é J. ¥ (x)dx (9.16)

X~cf

9.3 An example of D’Alembert’s solution

A stretched string is released from rest (i.e. ¥(x) = 0) with an initial square
displacement. Hence from Eq. (9.16)

y(x.t) =%[U(x— ct)+U(x+ct))] (9.17)

The resulting evolution is shown in the Figure below

This figure can also be represented' on a space-time (x,£) domain. Let y(x,Z) point out
of the paper.



In regions 1, 2, and 3, y(x,H) =0 forallx, ¢

In region 5, y(x,¢)= ;‘-u (x—ct)  -as s-et<a
In region 4, y(x,z‘)=%u(x+ct) —e<rtctsa

In region 6, y(x,)= %—[u (x—c)+ulx+ct)]  x-ct>—a

x+et<a
10 Waves

Travelling waves

- As we saw in Section 7 the case of the transverse oscillation of individual masses the
time dependence of the normal modes oscillation is sinusoidal. Let us consider the
case that the time dependence of the vibrating string at #=01is also sinusoidal,
y(x,0)=sin(wt). In this case, from Eq. (9.9), the full x, dependence is given by the
“wave”

- y(x,)=A sin(kx+ @t) + B sin (kr - wt) (10.1)
where A, B and kare constants, The speed of the wave is
)]
c=— 10.2
2 | | (10.2)
Its frequeéncy, f, Is inversely proportional te its period, 7, and i§ given by
1 o .
= — 2 e 10.3
f iy (10.3)

This is illustrated in the figure

(0u)




Finally its wavelength, 2., is inversely proportional to its “wavenumber”, k, and is
given by :
2
A= —lf- (10.4)
as is clear from the figure showing y(x,0)

¥x,0)

We can write the equation of a travelling wave in a number of analogous forms:

Velocity Wavelength | Period Angular
: ] frequency

Asin (fx—t) alk 2nlk 2n/m o
Asink(x-vt) v 2n/k 27/ vk vk

Alt A T 2/t
A sin.l:Zrc (_x__ i)—l

AT _]

Asin[Zﬂ: (x—vt)/,l] v A Alv | 2zviA

Note that it is often more convenient to represent a travelling wave by a complex
exponential (this is particularly useful when one wants to combine phases):

y(xt)= Re{Aexp[i(zoc - mr)]} =Re{|4] gxp[z(zm ~or+4)]} (103)

where A is complex, 4=|4]e".

Sometimes it is more convenient to switch x and ¢, i.e.
y (x,t)=Asin (ot —kx) (10.6)
This is still a travelling wave moving to the right.

Of course, as discussed above, for a non-sinusoidal wave maoving to right with speed
¢, we can always write itas f (x— vz‘) for some (non-sinusoidal) function f.

Stationary waves

Consider a string with two waves of equal amplitude travelling in the opposite
directions

y =Asin (e — ot )+ 4sin (e + ot )

(10.7)
=2 Asinkxcoswt




Consider now the displacement at some fixed ¢, e.g. t = 0, for which y=24sinkx.
Some small time ¢t later the displacement becomes y =24 cos (0.6 t)sin kx . This has

exactly the same x-dependence, and has ot shifted at all (zeroes of y stay at the same
x) but the amplitude now just a,bit smaller.. : . : .

Hence as ¢ increases, the wave stays in the same place, but the amplitude varies.
e.g. o
at ot=7m/2 ¥ =0 everywhere
at ot=mx y{xm/ o)==y (,0)
This wave is called a “Stationary Wave”. It oan be written in several forms, e.g.
y= 2A sin :—Z%Jicos 2n2 , and there may be arbitrary (constant) phases, e.g.

T

24sin (kx + ¢I)cos(cot+ ¢2) .

o

~ Longitudinal and Transverse Waves and“Polariséf-iGn- :

A wave on @ string has a displacement perperidicular to the (x) dir ection in which thc
wave travels i.e. it is a “Transverse” wave, But a sound wave has molecules moving
backwards and forwards along the direction of wave propagatlon, I.e: sound waves are

“Longltudmal” waves, Another example of a longitudinal wave is 4 coiled spring w1thv _

the compression moving along spring.

Nowr clearly there is only one direction along the direction of propagation but there
are two directions per pendlcular to the direction of propagation i.e. a transverse wave
moving along the x— axis can have two directions of transverse displacement,

y= Asm(loc cot) and z= B sm(kx cot+¢) Hence transverse waves can be

“polarised”; but longitudinal waves cafl not. Polarisation states correspond to definite
values for the amplitudes A and B: s

4 |B ¢ | Polarisation state

1 |0 - |Linear - |—

0 11 = |Linear |1

1 {1 0 | Linear 2

1 |1 | #x |Linear [N
1 1. | w2 | Circular | (LH)
1 1 -2 | Circular | (RH)




10.0 Partial differential equations

The wave equation (8.5) is a differential equation for y(¢,z) containing partial derivatives
of second order, linear and homogeneous. The transformation used in Eq. (9.2) to find its
solution corresponds to curves in the ¢,z plane which are called the characteristics of the
equation. This section gives a brief introduction to basic concepts on partial differential
equations (PDE) and the method of characteristics. The subject will be developed in
2nd-year math methods.

A partial differential equation (PDE) is a differential equation for a function of several
variables wu(1,...,%,), and contains partial derivatives of u with respect to z,...,Zn.
The order of the PDE is the order of the highest partial derivative appearing in it. As
in the case of ordinary differential equations (ODE), a PDE can be given in terms of a
differential operator D,

Du=h.

The function b = h(z1,...,2z,) is a given function of the independent variables. If h = 0
the PDE is homogeneous; if A~ # 0 the PDE is inhomogeneous. A PDE is linear if the
differential operator D is linear, i.e., if it obeys

D(a1u1 —+ a2’u,2) = Oé]_D’LLl + OZQD’U,Q

for any two functions u;, us and any two constants as, .
Consider for instance a case with two variables, u(z,y). Denote partial derivatives as
Ou/0z = uy, 0%u/0r* = Uy, and so forth. So a first-order linear PDE can be written in
the general form

Az, y)us + B(z,y)uy + Clz, y)u = R(z,y)

where A, B, C, and R are given functions of z and y. If R = 0 the PDE is homogeneous.
The equation
uuzz+u§~u2=0

is an example of a nonlinear second-order PDE.

Analogously to general solutions of ODEs depending on arbitrary integration constants,
general solutions of PDEs depend on arbitrary functions. The D’Alembert solution (9.9)
of the wave equation is an example of this. In order to determine such functions, one needs
to prescribe the values of the function u and/or its derivatives along the boundary of a
given region. Different kinds of boundary conditions are appropriate for different PDEs.
An example of boundary value problem for the wave equation is considered in Sec. 9.2. It
is an example of Cauchy boundary conditions, to which we come back later in this section.
In the following we consider second-order linear PDEs. These encompass a great number
of equations relevant for physics applications.

A. Second-order linear PDEs

In the case of two variables z,y a second-order linear PDE has the general form

A(Z, Y) Uz + 2B(x, Y) sy + C(, Y)Uyy + D(2,y)us + E(z, y)uy + F (2, y)u = R(z,y), (1)



where A, B, C, D, E, F, and R are given functions of 2 and y. It is ‘iseful to classify these
equations, based on the coeﬁ'icmnts of second-order derivatives, according to sgn (,732 AC)
as follows:

i) B2 — AC < 0 elhptlc an example is the Laplace equatmn Ugg + Uyy = 0.

ii) B2 — AC = 0: parabolic; an example is the diffusion equation, or heat equation,

Up — QUgg = 0.

iii) B2 — AC > 0: hyperbolic; an example is the wave equation s — c?ugzy, = 0.
So for instance electrostatics problems are governed by elliptic equations; transport phe-
nomena by parabolic equations; wave propagation by hyperbolic equations.
Since it only depends on the 2nd-order coefficients, this classification is valid also for quasi-
linear equations, namely equations that are linear with respect to the highest partial deriva-
tives, in this case 2nd-order.
The above classification is given in general point by point. We will consider examples in
which the coefficients are constant, so that the type of the equation is the same for every
point.
Different types of bounda,ry conditions are appropriate to the different types of equations.
above. Cauchy boundary conditions consist in prescribing the values of the function u and
of its normal derivative u, = Ou/dn on a given curve «y in the zy plane. We find that Cauchy
conditions are of primary importance for hyperbolic PDEs. There exist other important
types of boundary conditions, which are weaker than Cauchy: Dirichlet conditions, in which
only the values of the function u are prescribed, and Neumann conditions, in which only
the values of the normal derivative u,, are prescnbed Both are relevant for elhptlc and
parabolic equations. -

B. Characteristics

We have obtained D’Alembert’s solution (9.9) of the wave equation by making the trans-
formation (9.2) to new variables z F c¢t. The curves in the zt plane

x — ¢t = const. ,

z + ct = const. ,

play a special role for the wave equation and are called the characteristics of the wave

: v
\i / x—ct=const.

X

\ X+ct=const.




equation. We here introduce the basic concepts and results on characteristics.
Consider the 2nd-order linear PDE in Eq. (1),

Aug + 2By + Cugy + Dug + Eug + Fu=R .

It is convenient to introduce the matrix of the 2nd-order coefficients

@=(g g)

Characteristics of the above PDE are defined as the curves
x(¢,z) = const. : (2)
such ‘that their normal n either is rotated by 90° by @ or is annihilated by @Q, i.e.,
n-@n=0.
Since the normal n is proportional to the gradient Vx = (x¢, Xz), we have
Vx-Q@Vx=0.

We can write this condition explicitly as

o x5 2) () =0

Ax2 4+ 2Bxsxe +Cx2=0. (3)

that is,

Ezample. For the wave equation
—= Uttt Ug =0,
c

the matrix @ of the 2nd-order coefficients is given by
_[(-1/c 0
(717 1)

X=(t, ) = z F ct = const.

The curves

are the characteristics of the wave equation because

Vx;=<q;c> = VXtQVX=(:FC 1)(_10/c2 2) (qic> =(Fc 1)<ii/c>=0-



It may also be useful to rewrite Eq. (3) in terms of the derivative z'(t) of the function
z = z(t) defined implicitly by Eq. (2). This is given by*

g(t) = -2
© Xz

Then by substituting x: = —x2’ into Eq. (3) we get
Al (t)]> = 2Bz/(¢) +C =0. (6)

This quadratic equation in 2’ illustrates that hyperbolic PDEs (B? — AC > 0) have 2
families of characteristics, parabolic PDEs (B? —~ AC = 0) have 1 (Q Vx = 0), and elliptic
PDEs (B% — AC < 0) have none.

So for instance there are no characteristics for the Laplace equation ug, + Uyy = 0. In the
example above of the wave equation uy — c*ugy = 0 we identified the two characteristics
Z F ct = const. The diffusion equation u; — oy, = 0 has one family of characteristics
t = const.

Characteristics x(¢,z) = const. can be used to solve hyperbolic equations by means of
the transformation of variables

n= X“(ta CC),
5 = X+(t7 w)

An example is in D’Alembert solution of the wave equation in Sec. 9. Characteristics also
serve to analyze whether boundary value problems are well-defined. An example of this is
discussed in the next section.

C. Cauchy boundary conditions and characteristics

In this section we consider the Cauchy boundary value problem for a 2nd-order linear
PDE and ask under which conditions this is well-posed. The main result is that Cauchy

1To see this, rewrite Eq. (2) as
g(t,z) = x(¢,z) — const. =0 , 4)

and Taylor-expand to first order the function of two variables g(t, ) about an a.rbitraiy point ¢y, g on the
curve,
9(t,z) = g(to, zo) + g (to, %0) (¢ — to) + gz (o, To)(x — z0) + ... ,

where the dots stand for quadratic terms in the Taylor expansion. Now using Eq. (4) we have

z—zo _ _ g:(to, To) _ _ xi(t0, o)
t—1to 9z (to, To) Xa(to Z0)

(5)

Taking the limit ¢ — to in Eq. (5), the left hand side gives the derivative '(to), while the higher order
terms in the right hand side give vanishing contribution. Thus

o' (t) = -2
() Xz



boundary conditions on curve 7y are well-defined provided « is not a characteristic (Cauchy-
Kowalevska theorem).
We consider the 2nd-order linear PDE in Eq. (1), which has the form

Aug + 2By + Cugy = H (U, Ug, U, t,T) (7)

where we have written explicitly the 2nd-order terms, and incorporated the lower order
terms and inhomogeneous term in the function H.

Let us consider Cauchy boundary conditions for u(¢,z) on a given curve «. That is, let us
suppose that, given the curve  specified by

G(t,z) =0, ®8)

where G is a given function of ¢ and z, the values of the function u and of its derivative
along the normal direction n to v, u, = n - Vu, are assigned on .

The normal and tangential directions to <y, n and 7, are respectively proportional to the
gradient of G and orthogonal to it. So n = (G, G)/|VG|, 7 = (=G, G1)/|VG|. Given u
on 7, we can compute the tangential derivative u, = 7- Vu. From wu, and u, we can obtain
us and ug. In order for the boundary value problem to be well-defined, we have to be able
to determine higher order derivatives as well, so that from the differential equation and the
boundary conditions we can fully calculate the function u.

Consider a second derivative in the tangential direction:

. G,
VG| 5 U= VG| 7 -V us=(—Gy Gy) (““) = —Ggus + Gegs (9)

el g—T e = VG| 7-Vug = (-G, G) (Zf) = ~Gass + Getioe  (10)

TT

We can treat Egs. (7),(9),(10) as three linear equations in s, Uzy, Uz, having one and only
solution if the determinant is nonzero, i.e., if

A 2B C
det —Gz Gt 0 75 0.
0 -Gy G
This implies _ '
AG?+2BGG,+CG2#0.

By comparison with Eq. (3), we see that the curve vy specified by Eq. (8) must not be a
characteristic in order for the Cauchy conditions to be well-defined.

The case of the wave equation with the initial conditions at ¢ = 0 in Egs. (9.10),(9.11)
is an example in which Cauchy conditions on the function and on its normal derivative
are given on a curve, the horizontal line ¢ = 0, which does not belong to the families of
characteristics.

In the case of the diffusion equation u; — auz; = 0, on the other hand, as noted below
Eq. (6) the curves ¢ = const. are characteristics. So we do not expect Cauchy type of
conditions at ¢t = 0 to give a well-defined boundary value problem in this case.



11 Group and Phase velocity.
11.1 Information transmission

Let us consider how a signal might be sent via a wave. It is necessary to modulate the
wave otherwise it will convey zero mfmmatlon An example is given by the signal
shown below

Here the wave is on for time T, then off i.e.y = Asin(lbc ~ a)t) for |k~ o< 0T /2
and y =0 for [lt—wf|> 0T /2. It is important to note that this is #ot a single
frequency wave for which y = 4sin (loc - cooz‘) for some frequency @, and which

would apply for all kx~wt. In order to buld up a wave which is off at some time it
is necessary to have a superposition of a range of frequencies.

[This actually requires FOURIER TRANSF ORMS which we won’t meet until the 2™
year, but we will give a simple illustration of the result below]
11.2 Group and phase velocity

Let us consider in more detail our example of a wave that conveys information which
is made up of a superposition of many waves with a range of frequencies. For
illustration we consider a superposﬁmn of a discrete number of waves.

)= ED cos(kx—w,2) (1L.1)

where D, are constants. An immediate questlon is how fast does envelope carrying

the signal move? The answer to this is called the “group velocity”. This can be quite
different from the answer to the question how fast do the individual waves in the
superposition travel? This is called the “phase velocity”.

Let us first compute these velocities.

| - 2 >
| £=0 - I=h
Ly
[« >

Figure 11.1




From Figure 11.1 we may determine the group velocity, g, by working out how far
the front of the signal moves in timez, . Thisis given by:

L, ‘
g=—* (11.2)
. I
What about the phase velocity? In Eq. (11.1) the individual waves have phase velocity
)
k

Non-dispersive medium

If these are all equal, v, = v, the envelope moves with unchanged shape and the

phase velocity is the same as the group velocity. That this is the case follows from
the fact that in this case Eq. (11.1) may be rewritten as -
N

N
y(x,t)= ZD" cos(knx - co"t) = D, cosk, (x - vt) = y(x—vi) (11.3)
n=1 n=l
i.e. a function of (x— v#) only. This is the form of d’Alembert’s solution obtained in

Section 9.2 and shows that the whole wave mioves with the phase velocity, v, with
unchanged shape, i.e. the group velocity equals the phase velocity.

Dispersive medium

Now let us consider waves in a “dispersive medium?, i.e. one in which different
frequencies are transmitted at different speeds:

y= Asin(ke—wt) where v = 0/ k= f (o) (11.4)
A well known example is the passage of light through a glass prism where

different colours emerge at different angles because the refractive index y (= ¢/V)
depends on the colour (@), i.e. v depends on .

What happens to our example in Eq. (11.1)? In this case the individual phase

" w, . . .
velocities v, = —"are not all equal and the group velocity can be quite different from

i

the phase velocity. This is illustrated in Figure 11.1 where one phase velocity, given

L : . :
by v, = -t—l-, is greater than the group velocity g . To make this clearer let us turn to a

more definite, albeit oversimplified, model of a wave packet of the form of Eq. (11.1)
but with N =2, i.e. a superposition of just two waves.

11.4 A simple.approach to building a wave packet

Although we really need an infinite number of different frequency waves to construct
a finite wave packet here we will illustrate the result using just two waves, y, and y,.

Y= Asin[(k + ék)x - (co + 5m)r]
Y, = Asin[(k— 5k)x - (co - 560)1‘]
where Sk and S are small, Then

(11.5)



Y=+ y, =2A4cos (Skx—Swt)sin (kx—wt) (11.6)
The first term has a very long wavelength 27/6k (and very long period 27/6w). This
describes the slowly varying envelope which moves at speed g = Sar 6k.

The second term is very similar to y; and y, and has speed v = /k for the individual
wavelets. | C '

The addition of these waves gives the following

I.wﬂ I
o

£ MMM
a I

TP
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g

Ploz‘for});,yz and yy+y; where 6k/k = 0.05.

This is not exactly one packet of waves, but an infitite series of sausages (because we '

used two waves instead of infinite number). However the essential point is that
envelope moves with speed g =6/ 6k and not at the mean phase velocity v = @/k.

11.5 Groﬁp velocity for a complete wave packet

For the case of a real wave packet of finite extent comprised of an infinite number of
different frequency waves the group velocity is given by
' do

g==> 117

For the case of a dispersive medium with v=w/k= f (a)) then %% need not equal

% and so the group velocity need not equal the phase velocity. As we have discussed

it is the group velocity that determines the speed a signal can propagate and this is
constrained by the theory of relativity to be less than or equal to the speed of light ,
g S c. However the phase velocity, v, can readily be greater than c.

We can illustrate this with a simple example. Consider an experiment to determine the
speed of light by measuring the time of flight of a pulse of light through a long tube
filled with air to determine its velocity, v,. Since i1, we need to correct the



measured time to determine the speed of light, ¢, in vacuum. The naive answer is
c =V, W but this does not give the group velocity if i depends on & i.e. on the

frequency.
To make this explicit let us assume the phase velocity , v, varies with colour as
V= -C;Cl = c(l - bk), ie U= % = 1—_—1-5 . Then @ = c(k - bK? ) g'iving‘for the group

velocity g = -aﬁ = c(l - Zbk) , different from the phase velocity, v= —:Z From this one

ok

sees it is incorrect to change the measured velocity v, to v, i to allow for the effect
of the air. '

11.6 Dispersion and the spreading of the wave packet

Since a finite wave packet involves a superposition of waves with a range of
frequencies, if the velocity is frequency dependent then, necessarily, the shape of the
packet will change because the individual wave components are moving with

AN
VAV

DAYV
\V \/ \/ T
different speed. This is illustrated above. However this immediately demonstrates a

problem to measuring the group velocity because if the shape of the wave packet is
changing it is impossible precisely to measure the envelope’s speed. This effect may

be seen al gebraically from the fact that the group velocity g = Z—Z is in general a

function of the frequency and thus not uniquely determined for a wave packet
comprised of a range of frequencies. In practice this may not be so important for a
long wave packet as in this case the range of frequencies in the packet is quite small
so the ambiguity of the group velocity is also small.

11.7 Alternative expressions for g

There are many equivalent expressions for the group velocity. Above we used

do
=— 11.8
T (11.8)
But @ = vk so we can write it as
dav
=v+k— 11.9
g=vti— (11.9)
Further, since k=27 /A we also have :
g=v—/'L—dl (11.10)

di



Yet another form is given using v=e¢/
¢
=] ] —_—t 11.11
g U ( Ll J (11.11)
Le. g#c/)i in a dispersive medium as we found in our example above.

Note here we have used k and 1 as measured in a medium. More conventionally we
use the wavelength, A’, measured in vacuum. In terms of it we have

eyl

¢ 1h+‘_Y_..C.Z_.;.{'_:

Ay
¢ c v
since A’=A— and f=—=—,
v and f A2

Examples

1. Consider a wave traveling through a dispersive medium in which the relation between
wave speed v and wavelength ) is given by

v? =+ M\,

where ¢ and wg are constant parameters. Show that the product of phase and group
velocities equals c2. ' ‘

By differentiating the above relation we have

N2
wdv=22d\w? , e %=A?.
Then the group velocity is given by -
g=v—/\@=v——8—u—}§=v——1}2_02=-c—2
X v v
Thus
gu==c.

2. A model for describing propagation of waves in deep water is
w=0 IVE,

where C' is constant. Show that the grodp velocity equals half the phase velocity.



Since v = w/k, we have w/k = C’/\/E,. ie.,

w=CVEk.

Therefore the group velocity is

12 Energy of vibrating string

Let us assume the string carries a transverse wave y = 4sin (kx—or) and consider a

small portion of the string as shown in the figure below. The string has linear density
p . There are two contributions to the energy, the kinetic energy and the potential

energy.

Kinetic energy (K.E.)

The K.E. of the segment shown is given by

2
K.E.=—1-p5x(2}i) ]
2\ ’ (12.1)

= -;—bAzwz cos® (kx’ - a)t) Sx

We may now integrate over a distance I'that contains a whole number of wavelengths,
at fixed z.

x4+l i
K.E.= % pAw? J‘ cos? (kx - (ot)dx = —i- pAlw? X L (12.2)

2
Hence the K.E. per unit length is given by

14



KE/l= -‘l’:pflzco2 (12.3)

Potential energy ~

The wave stretches the string leading to an increase in its potential energy relative to
the value in its equilibrium position. The potential energy in a the segment is given by
the work done in stretching the string, The tensmn, T, is the force resisting the
stretching so we have

P.E. of segment =T (51 - 6x)

5\ "
=T6x 1+(EZJ -1 (12.4)

X

~Llrep cos® (ko — it ) 6
2
Integrating this over [ leads to the result

PE/l= %TA%Z (12.5)

How do the K.E. and P.E. compare? Since v=w/k=4+/T / p we have Tk* = po’
and hence

PE./I=— 7 L= pAzcoz =K.E./! (12.6)

Hence the total energy per unit length is gwen by .
E/l= pA2 2 (12.7)
12.1 Energy flow

In time #, the wave moves a distance v (note that since we are considering a plane
wave of definite frequency it is the phase velocity, v, that is relevant). Hence the
energy flow/unit time, F, is given by

F= (-;— pAza)z)vt It
= % pa* Ay
=%pc03A2/k | (128
= %T szzy |

= -l—Tco}’cA2
2



( Note that the enei'gy flow may also be.calculated by considering the rate at which
the string to the left of a position does work on the right.

E=Fy,
(12.9)
Y

‘ . T
Substituting for y and differentiating we find the same answer.)

13 Solution of the wave equation — separation of variables
In this section we introduce the method of separation of variables for finding solutions

to the wave equation. In Section 8 we derived the wave equation which for
convenience we repeat here

%y 1 3%
=== 13.1
ox*  v* o (13.1)
where v is the speed of the wave.
We now look for solutions that have the “separated” form: :
y(,1)=X(x)T(t) (13.2)
Substituting this into the wave equation we find: '
ax(x) 1 _, \dT(t)
T@—EF—=FX@}E?— . (13.3)
or '
X 17T
X" 7T (13.4)

Now the left-hand side of this equation is a function of just x, while the right-hand
side is a function of just t. The only way that a function of x can equal a function of ¢
for all x and ¢ is if both are equal to a constant, C;. We look for a solution in which

this constant, known as the “separation constant”, is negative, Cs=-k. i.e.

E=??= S=_k2 . (13.5)
Then we find that
X+EX=0
7+ BT =0 (136

The separation constant reduces the partial differential equation to two ordinary
differential equations which may be solved using standard methods to give:
X = Acoskx + Bsinkx

T = Ccoskvt+ Dsinkvt
where A4, B, C and D are unknown constants which may be found from the boundary
conditions. If the boundary conditions constrain 4 = 0, and D = 0 then we find that

y(x,z‘) = X('x)T'(z.‘) = B’sinkxcoskvt (13.‘8)
(B’=BC) which is a standing wave of the form that we introduced earlier in Eq. (10.7)
(N.B. kv=w). Eq. (10.7) shows the connection of the solution we have just obtained
by separation of variables with that we obtained previously by d’Alembert’s solution.

(13.7)



In deriving this solution we chose our separatlon constant to be negative. What
happens if we had chosen it to be positive?- If Cs = +#* then we find:

y(t)= X (x)T(¢) = (4e™ + Be™)(Ce™ + De™) (13.9)
If Cs= 0 then we find: ‘

y(xt)=X(x)T ()= (4+Bx)(C+Dt) . (13.10)
and the list continues for complex separatioﬁ‘donsténts. Which of these solutions is
elevant depends on the physical situation. In these lectures we are concerned with the

sinusoidally varying solutlons that correspond the negative’ chmce for the separation’
variable.

Even having chosen the sign the solution is nét unique because any value of & ‘may
be used. Indeed, since the differential equation is linear, the principle of superposition
applies and a linear combination of any number of solutions with different values of
kwill still be a solution. In the next section we will see how this can be used to find
general solutions to various physical situations. .

13.1 Wave on a string with fixed ends

x=0 .v=
Consider a string given an initial displacement, y(x,0), and then released. What

happens subsequently? Since the string has fixed ends we also have the boundary
conditions y(0, t) y(L 1)=0.

We.have found by separation of varlab]es that a solutlon to the wave equatlon is given
by:

y(x,t)-—-(Acoskx-FBsinkx)(C’coskvt+ Dsmkvt) (13.11)

As we shall see we can use a linear superposition of such solutions with different
choices for k to build a solution that satisfies the boundar y conditions. Let us consider
the boundary conditions in turn.

i) The string is initially at rest, i.e. dy/ 3¢ =0 for all x, which 1equ1res D=0

i) ¥(0,8) = 0 requires that 4 =0

iif)  p(ZL.f) = 0requires that kL = nz, where n is any 1ntegex This latter
condition is known as the eigenvalue equation and it limits kto be an

integer multiple of nz / L ; each of these values corresponds to a normal
mode.

With this we can write the most general solution consistent with the boundary
conditions i)-iii) as a linear superposition of the normal mode solutions:

y(x,,t) AN A sin ¥ g TVE

, (13.12
n=0 " L L ( )




So far we have not imposed the final mmal condition, namely the initial displacement
¥(x,0). If the initial string dxsplacement initially corresponds to a normal mode

(x0)= Bsm—-—%ﬁ (13.13)

then by comparision with Eq. (13.12), 4, =23 for n=1m, 4, = 0 otherwise and the
subsequent motion is given by

mryvt

L
What if initial displacement does not correspond to a normal mode?
e.g. a plucked guitar string with shape

y(x,z‘) = Bsin-n—igfcos

=0 =12

In this case the subsequent motlon described by an infinite sum of normal modes as in
Eq. (13.12). Att=0

(x,0)= zmm””x o (13.14)

‘and the form of'the initial displacement w111 determine the A, coefficients. In the

second year you will study Fourier series of this type It turns out that the coefficients
can easily be found due to the orﬂlogonahty of the sine functions over the range
0<x<L,giving

L
4 =% J' (2 0)sin 22 i (13.15)

I-Iowever, since this lies beyond the scope of these lectures, let us consider a simple
case in which the initial distribution is gwen by
1., 2zx
- 0)= BX o sin 2% 16
y(x,0)= smL s (13 )
Comaring with Eq. (13.12) we see that at subsequent times:
y( t) = smy—r;—ccosx—zz+ lsinz—mﬁcosw (13.17) |

Note that in this case we have a superposition of two normal modes and, unlike the
case with just a single normal mode, the subsequent motion is not equal to the initial
displacement X varying amplitude. Moreover since the shorter wavelengths oscillate
faster the shape of the wave varies during oscillation.

13.2 Normal modes and energy

In the previous subsectlon we have de’cermmed the normal modes of the strifig of 1ength L

with fixed ends: e
kn-z-z- , n integer ,



corresponding to the normal frequencies

nwy Ny
Wr, = Uk = o = —

L L

LS

The n-th normal mode can then be written as , .
. (TTTY vt R
Yn(z,%) = Asin ( 7 ) cos ( 7 + 5) (18)

The general solution can be expressed as a linear superposition of the normal modes. The
amplitude A and phase § are to be determined from the initial conditions at ¢ = 0 (e.g.,
we have seen that if 8y/8t =0 at t = 0 for all z, then & = 0).

We can now ask what is the energy associated with a given normal mode, and how the total
energy is distributed among dzﬁerent modes. To see this, we use the &tpressions féund in
Sec. 12 for the kinetic energy densﬂ;y dK/dz per nit length and poténtial energy densﬂ;y
dU/dz per unit length From Eqs (12.1) and (12.4) we have -

a5 1 [ay\* T

-3 (%) 9
w1 (T P
T=:T (%) S , - (20)

Then the kinetic energy for the n-th normal mode is obtained by using Eq (18) and
mtegratmg Eqg. (19) over the length of the string: :

1 z . ayn
) . _ ‘
1. g/nmuN2 . 5 (nmvl ;. g [ATT
A ( 7 ) sin ( T -{—6)‘/0‘ da;“s‘m (————AL )
272,732
= pA ZILW Y sin? (ni/;vt +5) :

Similarly, the potential energy for the n-th normal mode is given by

)

- o () ot

(mwt ) / i cos? )




TA?n2n?2  , (nmut
= TCOS I +4) .

Since pv? = T, the total energy for the n-th normal mode is

pA?n2ry? _ pLA%*w2

Bn=KntUn="—77 1

To find the total energy of the system, we express y(z,t) as a linear superposition of the

normal modes:
> . /nTT nwvt
y(z,t) = nE=1 Apsin (—L—) cos ( T + 5> .

When we evaluate the kinetic and potential energies K and U, similarly to what we have
just done for a single normal mode, we have to differentiate and square this }, and then
integrate over z. Upon integration, all the contributions from the crossed terms arising
from squaring the sum vanish, because

/OL dz sin (nzx) sin (m;mc) =0 ifn#m.

K=K, , U= U,

and the total energy of the system is given by the sum of the energies of each normal mode,

E=ZEn.

Consequently,

14 Wave reflection at a boundary

In optics reflection is caused at a boundary separating regions with different refractive
indices in which the light travels at different speeds. Exactly the same phenomena
occurs for the transverse waves propagating on a string. In this case on obtains a
boundary separating regions with different wave speeds by joining two strings of



different linear densities, P, - Since the tension, T, remains the same across the
boundary, the phase velocities are different '

Vo=yTIp, (14.1)

This is illustrated in the diagram

P2
P

x=0

x<0 x>0
Lighter string, larger v Heavier string, smaller v
— Incident wave . —> Transmitted wave
< Reflected wave

Incident wave Asin(wt - kx)

Reflected wave A'sin (@t +kx)

Transmitted wave Asin (0t =k,x)

Note:
1) We have made a slight change in the convention using ¢ — kx instead of
kx—cot . This is not crucial, but agrees with other treatments.
2) All waves have the same @ [This follows from the boundary conditions at x =
0. These cannot be satisfied for all # unless @ is constant — see below]
3) The transmitted wave has —k,x (right mover) ‘

4) The reflected wave has +k,x (left-mover)

The amplitudes 4" and 4” are determined in terms of the incident amplitude A from
the boundary conditions at x = 0. There are two boundary conditions

A) y(=€,t)=y(+&,t) where is a number close to zero. This just says
the string is continous.

B) ~a—z(——8,t) = ?Z(+8,l‘). This follows because, for small angular
ox ox
displacements, the vertical component of the force on the left of the

boundary T-gl(—-s,t) must be balanced by the vertical component of the
%

force on the left of the boundary T gz(e,t). (For small displaceinents the

x
horizontal component of the force vanishes to the order considered here —
see the discussion above Eq. (7.1))

These boundary conditions are more commonly written as
7(02)=2,(0.1)

Wy
—5;‘(0,t)- -é-xi(o,r)

(14.2)



where ¥, (x,t) = Asin(et — k.x)+ A’sin(wt + k;x) is the sum of the incident and
reflected waves on the left of the boundary and y, (x,2) = A"sin(w? — k,x) is the
transmitted wave on the right of the boundary. Thus we have

Asinot+ A'sinot= 4"sinot = A+A4'=4" : (14.3)
and
—k Acosot + k A'cos ot =~k;A"cosot = K (d-4)=k4"  (144)

These may be solved to give

» r_f:_kl—kz
A k+k, 14.5)
—Alf— 2k] *
T Ak +E,

coefficients respectively.

Special cases:
”

Dk=k = A =0, t=—:47 =1 No reflection

2) ky <k = A’ is negative
In this case the reflected wave may be written as

—lA’lsin(a)z‘ + k]x) = {A’lsin(a)t +hx+ ﬂ) i.e. there is a phase change at a rare-dense

boundary (sincev=w/k= JT!p, ki <k implies p; < p2).

Nk >k = A’ is positive

7

4) pr >0 = koo hericei r =—"j? — —1. In this case the tension T — 0 and

there is no wave in the very heavy string.

14.1 The energy flux at the boundary

In Eq. (12.8) we showed that the energy flux is proportional to the (amplitude)z. Itis
thus very tempting, but wrong to think that the power reflection and transmission
coefficients should be just Rp= rz, and Tp = #*. That this cannot be true can

immediately be seen from the fact that R, + T, # 1 which would correspond to non-
conservation of energy. To see this, note that from Eq. (14.5)

2 2
r2+t2=(ki—k2) { 2k, ] _SK -2k +E
2
ki +k, ki +k, (k] + kz)




The origin of the error is clear from Eq.(12.8) which expresses the power flux as
P= -;—TcokAz. Although T and @ are constant within the string k is different on each

side of the boundary, explaining the error. Hence at the boundary between the two
strings:

Incident power flux | P =%T ag)}’clA2 e
Reflected power flux B, = %T wk,A?
Transmitted power flux B = T;—Tcoszl”2
Hence the power reflection and transmission coefficients are given by
2
P r2 k—k
RF =—-&=-A—=7*2= ] 2 (14.6)
P A k +k,
2
B. kA k k1 2k - 4k ik,
e _—__2_t2=_z[» ! J: iz 14.7)
5 k4 k, ky\ K +k, (k] + kz)
Hence '
K-k k([ 2k Y K+2kk 4+
RP+TP=[’ 2) +—2-[ - J-_— 221 (14.8)
k +k, ki \ (kl +k2) :

as required by energy conservation.

14.2 Reflection from a mass at the boundary

Suppose that a finite mass M is fixed at the boundary betweén two semi-infinite
pieces of string of density p; and p,:

<€

The string is clearly continuous and hence the first boundary condition is

I - 2,(0,8) = 3,(0,1) (14.9)
as before, The second boundary condition however is not the same since we now have
a finite mass at the boundary. In this case the sum of the forces at the boundary act on
the mass and generates its acceleration in the transverse direction according to
Newton’s 2nd law:
2
-a—;’TZ(o,r) (14.10)

» Ps(0,0)= 1022 (0,1) =
~T=H{0,6)+ T=2(0,¢)= M—31(0,) = M -

ox ox o’



Egs. (14.9) and (14.10) are the boundary conditions for this problem. In this case we
see that they involve both first and second derivatives and for this reason it is easiest
to use a complex exponential representation for the waves i.e.

Y (x,t) = Re{Aexp(i(a)t - klx))} + Re{A‘exp(i(cot + k]x))}

Y, (x,t) = Re{Anexp(f(COf— kzx))}
where A isreal but A' and A" may be complex. Inserting this in Eqs. (14.9) and
(14.10) gives

(14.11)

A+ 4 =4 (14.12)

and
ik TA— ik T4 = ik,T4" = ~0* M( 4+ 4') = -0’ MA" (14.13)
which simplifies to
ik (4= 4)=(ik, -0’ M/ T) 4" (14.14)

From Egs: (14.12) and (14.14) we can determine the amplitude reflection and
amplitude transmission coefficierits:

? —_ —_ 7 2
S (= )T Z.'w ad =lrle”™ (14.15)
4 (k+k)T+io'M
t;:‘ﬁz 2k T =|fe" (14.16)

A (k+k )T +i0® M
Substituting this in Eq. (14.11) gives the real amplitudes with the reflected and
transmitted waves having phase shifts ¢, and ¢, relative to the incident wave.

Consider the special case where the second line has zero mass per unit length, i.e. we

just have a mass on the end of a line. ie. kp=0. Then:

A kT-io*M
e T (14.17)

Hence if M=0, r=1 and if Mis large, r =—1=¢€".

15 Characteristic Impedance

Although more commonly used for cases of electromagnetic waves travelling in
transmission lines or space, the concept of “characteristic Impedance” may actually
be defined for any wave motion and is a useful descriptive parameter.

For transverse waves on a string the characteristic impedance Z is defined as the force
acting in the y-direction divided by the velocity of the string in the y-direction,
ie.




£ T .
== ayax (15.1)
Ty

For a sine wave travelling in the positive x-direction y (x,#)= 4sin (kx—ar) and thus -
the characteristic impedance is:

Tk T
Z=—5=;=(Tp)”2

We may express the reflection and transmission coefficients of Egs. (14.15) and
(14.16) in terms of impedances

4 (h-k)r-i0’M Z-(z,+2,)
S 4 (ktk)THiO'M Z, +(z,+2,,)
A" 2kT 2Z,
T )T+za)2M=‘Zl+Zz 1z,
where we have substituted the wavenumbers for the characteristic impedances

(15.2)

k,
Z,, =—=2 and also for the ‘impedance’ of the mass: Z,, = iwM .
Yo

16 Other Waves

16.1 Waves on an Electrical Line

L | L L

c ¢ Tec

X x+ 8

The voltage change across the inductor of self-inductance L in one of the elements is
given (via Faraday’s law) as:

-0l 8V -
= 0z (16.1)

where we have assumed that the eléments are so small that the voltage change can be
related to the variation of voltage with distance.

Similarly the current flowing though the capacitance C in each element is given by:

G _-_ o O
= Cp=—8T=--6x (16.2)

Hence dividing these two equations by dx gives:



Lar_,3l_ v
wr Cu T w (163)
and

cov_ v _ d

a Ca (164)

where C’is the capacitance per unit length of the transmission line and L' is the self-
inductance per unit length.

Differentiating Eq. (16.3) with respect to ¢ and differenfiating Eq. (16.4) with respect
to x gives:

2 2 2
oV —_.1_..a_I_=...L’a_I_ (15.5)

Hence:
—=L'C"— (16.6)

which is a wave equation for . Similarly we can obtain a wave equation for V:
v, oV
ax ot

Hence the electrical line supports waves with a phase speed v=1/+/L'C’.

(16.7)

Suppose we have a voltage wave travelling in a single direction: ¥ =¥, sin (ot - kx ),
then using the above equations we find that I = (¥, /Z)sin (ot — kx) where Z is the
characteristic impedance given by Z=+/L"/C’.

Reflection at a terminated line

—R0000, 00, 000,
L | L 1 Zr
- __.C
A > x=0
< A

Voltage wave travels along a transmission line of characteristic impedance Zy and is
partly reflected by a terminating impedance Zr at x = 0. The voltage and current on
the line are thus given by:

V= Aexp(i(a)t—- kx))+ A’exp(z’(cot + kx))

ZI= Aexp(i(a)t— ]oc))—A’exp(zj(wr_,_ lo,)) (16.8)

Atx =0, V and ] are related by the terminating impedance and thus:



=27 . (16.9)
ZI z, A-4
Hence
rZ.-Z
;‘:eA———'- — (16.10)
A Z.+Z
Hence

when Zr—0, r—-=1
when Zr = Zo, r=0
when Zr— o, r—+]

These limits appear to be the reverse of what we found for the mass on the end of 2
string. However the characteristic impedance is defined differently. For strings
Z=Tk!/w=T/v.However for transmission lines Z = L’v which is somewhat
different !

16.2 Sound

Sound waves correspond to longitudinal waves associated with the compression of the
medium. Consider waves propagating in the x-direction as shown in the Figure

d(x) dierd)
“Wave direction
x X+
P prop

The compression caused by the passage of the sound wave changes the pressure and
the volume of the element of gas originally between x and x+&x. Consider a cross-
sectional area 4 of the wave, :

With no sound wave, the volume of the element of gas is ¥, = 45x.With the sound
wave passing the new volume of the element is
V,=A(d(x+6x)-d (x))+¥;

=4 5547, (16.11)
ox . _
3d

=V, =+¥,

_l_ax 1
Hence
57 =v,~v =%y (16.12)
ax

The instantaneous pressure of the gas may be approximated by



op

+
| L2 op od
| =4 o
|
| =p-E3
ox
where X is the bulk modulus of the gas (or solid) defined ag:
op
K=-V =
: oV

| The net force, F, acting on the element is:

F= A[P(x)—.ﬁ(x + 5::)].

op
= -—AE
% X
From Newton’; 2nd law
8%d Bp
Thus
od_ _op
P e~ 83:
Differentiating Eq. (16.13) with respect to z gives
op . &
o= X o
Hence
i — T : A 3d P izi
x* Ko
. . K
which is the wave equation with v = J-; .
The characteristic impedance is defined as
2
7= ax
od
_ or
so for a wave travelling in positive x-direction
Kk K 172
7= =—= ( PK)
w 1%
0P _

Isothermal compressions:

. Adiabatic compressions: 37

PV =constant = K=— 5;—

Py’=constant = K= —Vé— yp=> v—\/'yp/p

(16.13)

(16.14)

(16.15) |

(16.16)

(16.17)

(16.18)

(16.19)

p= V= p/p



o e 1= P
From kinetic theory we know p = y pv? whgts hete ¥ is the molecular speed. Hence

— 7“‘{ i ""1’ 3o . '
Vot = 4, EV andthus v =~ V. Of molecules sirice sound is transmitted by
moving molecules. ' ' "

N.B. For longitudinal waves travelling along s6lid bars; we' gt Very sithilat Solutiors 1
except that»thﬁe bulk modulus XK must be replaced by Young’s modulus ¥, We see this next,.

16.3 Longitudinal oscillations in a solid: bar

We consider the longitudinal vibrations of an elastic bar. For the thin slice befween z and
z+ 0z in the figure, let £ be the longitudinal displacement at z, and £ 4 6¢ the longitudinal
displacement at x + dz. Let A be the cross sectional area. Let p be the mass density.

X X+0x

—s —_—

E(x) E(x+08 x) =E+8E

The ratio of the elongation ¢ to the original length oz defines the strain. i?or small enough
strain, the force per unit area is given according to Hooke’s law by Young’s elasticity
modulus Y times the strain. Then from Newton’s 2nd law we have

9 0¢ o€

By expanding the right hand side in powers of §z, we obtain the wave equation

0% 1 0%
o =wam o V=V

Example

Study the longitudinal oscillations of an elastic bar of mass density p, Young’s modulus Y
and length L with one fixed end (i.e., no displacement) and one free end (i.e., no strain).
Determine the normal frequencies. ' '

The boundary conditions require that the longitudinal displacement &(z,t) satisfies

£00,6) =0 , 8¢ /0z(L,t) =0

Let us write solutions of the wave equation for £(z,t) in the separated-variable form




&(z,t) = <A sin %x + Bcos %x) cos(wt + ¢) ,
where v = 1/Y/p. Then the conditions at z = 0 and z = L imply

£0,6)=0 = B=0,
o€ wlh

L
%(L,t)=0 = cos%=0 = = =§—I—n7r .

Thus the normal frequencies are given by

™ 1 T |Y 1 .
W = f(n+ 5) =7 ;(n + 5) (n integer) .

The lowest normal mode frequency is

16.4 Sound waves in a 3-dimensional case

In Sec. 16.2 we have considered sound waves in a one-dimensional case. In general in
a compressible gas sound waves propagate in all three directions. We here extend the
treatment of Sec. 16.2 to the three-dimensional case.

For each point x = (z,y, z) we have displacements in three directions, d;, i = 1,2, 3. These
form a “displacement field”, d = (di, ds,ds), function of x and ¢. Each component d;
satisfies an equation of motion of the form (16.16),

pd;=—8p/dz; , ie, pd=—gradp . (20)

The variation of volume due to the sound wave is given by the 3-d generalization of
Egs. (16.11),(16.12). We have

AV = AyAZ[dl(CL' + A.’L‘, Y, Z) - dl(xa Y, Z)] + AZAw[d2($7 Y + Aya Z) - d2($7 Y, Z)J

_ O0dy  Ody  O0dz\ .. ..
+AzAylds(z,y, z + Az) — ds(z,y, 2)] = AzAyAz ( 5z By t 3, > =V divd

Using the bulk modulus K (16.14), we express the variation of pressure with volume as

op K . .
P—po-i-a—VAV—Po-f-(—V) (Vdivd)=py— K divd .



Therefore

op o .. . o
Er —-K 52 divd , ie, gradp= fK grad divd .

Inserting Eq. (21) into Eq. (20) we obtain

pd=Kgraddivd .

Eq. (22) is the equation for sound waves in a three-dimensional compressible gas.

The displacement field d can be expressed in terms of scalar potential ¢

_ d=grad ¢.
Then ¢ obeys the wave equation
1 8%
2 _ —
A YO v=+K/p ,
where
o2 92 02
2 _ 3 _
\% —dlvgrad—@+5y—2+@ .



