
We have seen

2nd-order linear ODEs with constant coefficients:

a2f
′′ + a1f

′ + a0f = h(x)

⊲ Complementary function CF by solving auxiliary equation

⊲ Particular integral PI by trial function with functional form

of the inhomogeneous term

♠ Next: physical application to
forced, damped oscillator
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The associated complex equation is 
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Complementary function Constant phase “shift” 

Since 0,  the CF 0 as t  ! > " "# .... CF describes "transients"
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Steady state solutions 
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Particular integral 

i.e. the Particular integral describes the steady state solution after the transients 

have died away. 
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exponential 
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The frictional coefficient causes the resonant  

frequency to be less than the normal frequency 
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Power Input  
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Average over a period 
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Energy dissipated 
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Quality Factor 
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Energy content of transient motion that the CF describes 
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Q is the inverse of the fraction of the oscillator’s energy that is dissipated in one period 

- approximately the number of oscillations before the energy decays by factor e 
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SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

• more than 1 unknown function: y1(x), y2(x), . . . , yn(x)

• set of ODEs that couple y1, . . . , yn

⊲ physical applications: systems with more than 1 degree of freedom.
dynamics couples differential equations for different variables.

Example. System of first-order differential equations:

y′1 = F1(x, y1, y2, . . . , yn)

y′2 = F2(x, y1, y2, . . . , yn)

· · ·

y′
n
= Fn(x, y1, y2, . . . , yn)



An nth-order differential equation

y(n) = G(x, y, y′, y′′, . . . , y(n−1))

can be thought of as a system of n first-order equations.

• Set new variables y1 = y; y2 = y′; . . . ; yn = y(n−1)

• Then the system of first-order equations

y′1 = y2

· · ·

y′
n−1 = yn

y′
n
= G(x, y1, y2, . . . , yn)

is equivalent to the starting nth-order equation.



♦ Systems of linear ODEs with constant coefficients can be solved

by a generalization of the method seen for single ODE:

General solution = PI + CF

⊲ Complementary function CF by solving

system of auxiliary equations

⊲ Particular integral PI from a

set of trial functions

with functional form as the inhomogeneous terms



♦ Warm-up exercise

The variables ψ(z) and φ(z) obey the
simultaneous differential equations

3
dφ

dz
+ 5ψ = 2z

3
dψ

dz
+ 5φ = 0.

Find the general solution for ψ.

♦ Next time we will consider explicit examples of
solution of systems of ODE’s with constant coefficients


