SECOND-ORDER LINEAR ODEs

$$f'' + p(x)f' + q(x)f = h(x)$$

\Diamond Generalities

\Diamond Structure of general solution

♦ Equations with constant coefficients

Second order linear equations

General form :
$$\frac{d^2 f}{dx^2} + p(x)\frac{df}{dx} + q(x)f = h(x).$$

Integrating factor? Suppose $\exists I(x)$ such that $\frac{d^2 I f}{dx^2} = I h$

$$2\frac{\mathrm{d}I}{\mathrm{d}x} = Ip \quad \text{and} \quad \frac{\mathrm{d}^2 I}{\mathrm{d}x^2} = Iq$$

These equations are incompatible in most cases....

Ma will study a subset of 2nd order equations which encouring a wide

Structure of the general solution (GS)

$$f'' + p(x)f' + q(x)f = h(x)$$

♠ The general solution f is the sum of a particular solution f_0 (the "particular integral", PI) and the general solution f_1 of the associated homogeneous equation (the "complementary function", CF):

$$f = f_0 + f_1 ,$$

i.e.,
$$GS = PI + CF$$
.

♠ The complementary function CF is given by linear combination of two *linearly independent* (\hookrightarrow see next) solutions u_1 and u_2 :

$$CF = c_1 u_1(x) + c_2 u_2(x)$$

 c_1 and c_2 arbitrary constants

♠ Two functions $u_1(x)$ and $u_2(x)$ are *linearly independent* if the relation $\alpha u_1(x) + \beta u_2(x) = 0$ implies $\alpha = \beta = 0$.

Let $\alpha u_1(x) + \beta u_2(x) = 0.$ Differentiating $\Rightarrow \alpha u'_1(x) + \beta u'_2(x) = 0.$

• If
$$W(u_1, u_2) = \begin{vmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{vmatrix} = u_1 u'_2 - u_2 u'_1 \neq 0$$

then $\alpha = \beta = 0$, and u_1 and u_2 are linearly independent.

• If $W(u_1, u_2) = u_1 u_2' - u_2 u_1' = 0$

then $u_2 = \text{constant} \times u_1 \Rightarrow u_1$ and u_2 not linearly independent

 $W(u_1, u_2) =$ wronskian determinant of functions u_1 and u_2

• *n* functions $u_1(x), \ldots, u_n(x)$ are linearly independent if $\alpha_1 u_1(x) + \ldots + \alpha_n u_n(x) = 0 \implies \alpha_1 = \ldots = \alpha_n = 0.$

Example: The functions $u_1(x) = \sin x$ and $u_2(x) = \cos x$ are linearly independent.

Let $\alpha \sin x + \beta \cos x = 0$.

Differentiating $\Rightarrow \alpha \cos x - \beta \sin x = 0$.

So
$$\alpha = \beta \frac{\sin x}{\cos x} \Rightarrow \beta \left(\frac{\sin^2 x}{\cos x} + \cos x \right) = 0 \Rightarrow \beta \frac{1}{\cos x} = 0 \Rightarrow \beta = 0$$
.
Thus $\alpha = \beta = 0$.

• Alternatively:

 $W(u_1, u_2) = u_1 u'_2 - u_2 u'_1 = -\sin^2 x - \cos^2 x = -1 \Rightarrow \text{ linear independence}$

Homework

Determine whether the following sets of functions are linearly independent.

Homogeneous equation:

f'' + p(x)f' + q(x)f = 0

Any solution u can be written as a linear combination of linearly independent solutions u_1 and u_2 .

Since u, u_1 and u_2 all solve the homogeneous eq., with nonzero coefficients of the second-derivative, first-derivative and no-derivative terms, we must have det = 0

$$\begin{vmatrix} u & u_1 & u_2 \\ u' & u'_1 & u'_2 \\ u'' & u''_1 & u''_2 \end{vmatrix} = 0$$

 $W(u, u_1, u_2) = 0 \text{ for solutions } u, u_1, u_2$ $\Rightarrow \alpha u + \beta u_1 + \gamma u_2 = 0 \text{ for } \alpha, \beta \text{ and } \gamma \text{ not all zero.}$

Solving for u expresses the solution u as a linear combination of u_1 and u_2 .

$$\Rightarrow CF = c_1 u_1(x) + c_2 u_2(x)$$

• solutions span whole set of linear combinations of two independent u_1 , u_2

Example: The general solution of the 2nd-order linear ODE y'' + y = 0is $A \sin x + B \cos x$. (simple harmonic oscillator)

To show this, it is sufficient to show that i) $\sin x$ and $\cos x$ solve the equation (e.g. by direct computation) and ii) $\sin x$ and $\cos x$ are linearly independent (see previous Example). Then general theorem $CF = c_1u_1(x) + c_2u_2(x)$ yields the result. • Useful reference for this part of the course, with worked problems and examples, is

Schaum's Outline Series Differential Equations R. Bronson and G. Costa McGraw-Hill (Third Edition, 2006)

 \diamond See chapters 8 to 14.

2nd-order linear ODEs with constant coefficients:

- general methods of solution available
 - arise in many physical applications

Second order linear equation with constant coefficients

Solution

$$Lf = a_2 \frac{d^2 f}{dx^2} + a_1 \frac{df}{dx} + a_0 f = h(x).$$

Complementary function

The number of independent complementary functions is the number of integration constants – equal to the order of the differential equation

1) Construct f_0 the general solution to the homogeneous equation $Lf_0 = 0$

2) Find a solution, f_1 , to the inhomogeneous equation $Lf_1 = h$ Particular integral General solution : $f_0 + f_1$

For a nth order differential equation need n independent solutions to Lf=0 to specify the complementary function

Second order linear equation with constant coefficients

$$Lf = a_2 \frac{d^2 f}{dx^2} + a_1 \frac{df}{dx} + a_0 f = h(x).$$

 $m_{\pm} \equiv \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2 a_0}}{2a_2},$

Complementary function

$$Lf = a_2 \frac{d^2 f}{dx^2} + a_1 \frac{df}{dx} + a_0 f = 0.$$

Try
$$y = e^{mx}$$
 \Longrightarrow $a_2m^2 + a_1m + a_0 = 0.$

"Auxiliary" equation

$$a_1^2 - 4a_2a_0 \rightarrow +, 0, -$$

Complementary function

$$y = A_{+}e^{m_{+}x} + A_{-}e^{m_{-}x}.$$

Two constants of integration

Ex 1
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = 0.$$

Auxiliary eq.
$$(m+3)(m+1) = 0 \implies CF$$
 is $y = Ae^{-3x} + Be^{-x}$

If
$$y(0)=2$$
, $y'(0)=0 \implies A+B=2$, $-3A-B=0$ Initial
conditions
A=-1, B=3 $\implies y=-e^{-3x}+3e^{-x}$

Ex 2

$$Ly = \frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 5y = 0.$$

Auxiliary eq. $m^2 + 2m + 5 = 0$
i.e. $m = \frac{1}{2}(-2 \pm \sqrt{4 - 20}) = -1 \pm 2i \implies CF$ is $y = Ae^{(-1+2i)x} + Be^{(-1-2i)x}$

But *L* is a real operator $\Rightarrow 0 = \Re e(Ly) = L[\Re e(y)]$

i.e. $\Re e(y)$ is a solution (as is $\Im m(y)$) $\Rightarrow \Re e(y) = e^{-x} [A' \cos(2x) + B' \sin(2x)].$

Find the solution for which y(0) = 5 and $(dy/dx)_0 = 0$ Initial conditions 5 = A' $0 = -A' + 2B' \implies B' = \frac{5}{2} \implies y = e^{-x}[5\cos(2x) + \frac{5}{2}\sin(2x)].$ Factorisation of operators

We wish to solve
$$Lf = a_2 \frac{d^2 f}{dx^2} + a_1 \frac{df}{dx} + a_0 f = 0.$$

We did this by trying $y = e^{mx}$ $a_2m^2 + a_1m + a_0 = a_2(m - m_+)(m - m_-) = 0.$ $m_{\pm} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2a_0}}{2a_2}$

This is equivalent to factorising the equation

$$\left(\frac{d}{dx} - m_{-}\right)\left(\frac{d}{dx} - m_{+}\right)f = \frac{d^{2}f}{dx^{2}} - (m_{-} + m_{+})\frac{df}{dx} + m_{-}m_{+}f$$
$$= \frac{d^{2}f}{dx^{2}} + \frac{a_{1}}{a_{2}}\frac{df}{dx} + \frac{a_{0}}{a_{2}} \equiv \frac{Lf}{a_{2}}$$

Now we can see why the CF is made up of exponentials because :

$$\left(\frac{d}{dx} - m_{-}\right)e^{m_{-}x} = 0$$
 ; $\left(\frac{d}{dx} - m_{+}\right)e^{m_{+}x} = 0$

Factorisation of operators and repeated roots

$$Lf = a_2 \frac{d^2 f}{dx^2} + a_1 \frac{df}{dx} + a_0 f = 0.$$

$$\left(\frac{d}{dx} - m_{-}\right)\left(\frac{d}{dx} - m_{+}\right)f = 0 \qquad m_{\pm} = \frac{-a_{1} \pm \sqrt{a_{1}^{2} - 4a_{2}a_{0}}}{2a_{2}}$$

What happens if $a_1^2 - 4a_2a_0 = 0$ and $m_+ = m_- = m$?

$$Lf = \left(\frac{\mathrm{d}}{\mathrm{d}x} - m\right)\left(\frac{\mathrm{d}}{\mathrm{d}x} - m\right)f$$

$$e^{mx}$$
 gives one solution : $L(e^{mx}) = (\frac{d}{dx} - m)(\frac{d}{dx} - m)e^{mx} = 0$

 xe^{mx} gives the second independent solution :

$$L(xe^{mx}) = (\frac{\mathrm{d}}{\mathrm{d}x} - m)(\frac{\mathrm{d}}{\mathrm{d}x} - m)xe^{mx} = (\frac{\mathrm{d}}{\mathrm{d}x} - m)e^{mx} = 0,$$

$$y = Ae^{mx} + Bxe^{mx}$$

Ex 4
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0.$$

Auxiliary equation $(m+1)^2 = 0$

Ex 5
$$\frac{d^4 y}{dx^4} - 2\frac{d^3 y}{dx^3} + 2\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = 0.$$

Auxiliary equation $(m-1)^2(m-i)(m+i) = 0$

$$y = e^x (A + Bx) + C \cos x + D \sin x.$$

Summary

2nd order linear ODEs: f'' + p(x)f' + q(x)f = h(x)

• General solution = PI + CF• $CF = c_1u_1 + c_2u_2$ u_1 and u_2 linearly independent solutions of the homogeneous equation

- Equations with constant coefficients:
- Solve auxiliary equation to find complementary function CF
 \$\laphi\$ distinct real roots
 \$\laphi\$ repeated roots
 \$\laph\$ complex roots

▷ Next: methods to find the particular integral PI