
SECOND-ORDER LINEAR ODEs

f ′′ + p(x)f ′ + q(x)f = h(x)

♦ Generalities

♦ Structure of general solution

♦ Equations with constant coefficients



Second order linear equations
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We will study a subset of 2nd order equations which appear in a wide

These equations are incompatible in most cases….



Structure of the general solution (GS)

f ′′ + p(x)f ′ + q(x)f = h(x)

♠ The general solution f is the sum of a particular solution f0 (the

“particular integral”, PI) and the general solution f1 of the associated

homogeneous equation (the “complementary function”, CF):

f = f0 + f1 ,

i.e., GS = PI + CF .

♠ The complementary function CF is given by linear combination of

two linearly independent (→֒ see next) solutions u1 and u2:

CF = c1u1(x) + c2u2(x)

c1 and c2 arbitrary constants



♠ Two functions u1(x) and u2(x) are linearly independent if
the relation αu1(x) + βu2(x) = 0 implies α = β = 0.

Let αu1(x) + βu2(x) = 0.

Differentiating ⇒ αu′

1
(x) + βu′

2
(x) = 0.

• If W (u1, u2) =
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then α = β = 0, and u1 and u2 are linearly independent.

• If W (u1, u2) = u1u
′

2
− u2u

′

1
= 0

then u2 = constant × u1 ⇒ u1 and u2 not linearly independent

W (u1, u2) = wronskian determinant of functions u1 and u2

♠ n functions u1(x), . . . , un(x) are linearly independent if
α1u1(x) + . . .+ αnun(x) = 0 =⇒ α1 = . . . = αn = 0.



Example: The functions u1(x) = sinx and u2(x) = cosx are linearly
independent.

Let α sinx+ β cosx = 0 .

Differentiating ⇒ α cosx− β sinx = 0 .

So α = β
sinx

cosx
⇒ β

(

sin2 x

cosx
+ cosx

)

= 0 ⇒ β
1

cosx
= 0 ⇒ β = 0 .

Thus α = β = 0.

• Alternatively:

W (u1, u2) = u1u
′

2
− u2u

′

1
= − sin2 x− cos2 x = −1 ⇒ linear independence



Homework

Determine whether the following sets of functions
are linearly independent.

x2 , x , 1 [Answ.: linearly independent]

1− x , 1 + x , 1− 3x [Answ.: linearly dependent]

ex , e−x
[Answ.: linearly independent]

ex , xex , x2ex , x3ex [Answ.: linearly independent]

sin x , cosx , sin(x+ α) [Answ.: linearly dependent]



Homogeneous equation:

f ′′ + p(x)f ′ + q(x)f = 0

♠ Any solution u can be written as a linear combination of
linearly independent solutions u1 and u2.

Since u, u1 and u2 all solve the homogeneous eq., with nonzero coefficients of the

second-derivative, first-derivative and no-derivative terms, we must have det = 0
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W (u, u1, u2) = 0 for solutions u, u1, u2

⇒ αu+ βu1 + γu2 = 0 for α, β and γ not all zero.

Solving for u expresses the solution u as a linear combination of u1 and u2.

⇒ CF = c1u1(x) + c2u2(x)

• solutions span whole set of linear combinations of two independent u1, u2



Example: The general solution of the 2nd-order linear ODE

y′′ + y = 0

is A sin x+B cosx.

(simple harmonic oscillator)

To show this, it is sufficient to show that

i) sin x and cosx solve the equation (e.g. by direct computation) and

ii) sin x and cosx are linearly independent (see previous Example).
Then general theorem CF = c1u1(x) + c2u2(x) yields the result.



• Useful reference for this part of the course,
with worked problems and examples, is

Schaum’s Outline Series

Differential Equations

R. Bronson and G. Costa
McGraw-Hill (Third Edition, 2006)

♦ See chapters 8 to 14.



2nd-order linear ODEs with constant coefficients:
• general methods of solution available
• arise in many physical applications
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Second order linear equation with constant coefficients



0 01) Construct   the general solution to the homogeneous equation 0Lff =

112) Find a solution, , to the inhomogeneous equation Lff h=

  

 

Complementary function

Particular integral

0 1
General solution : f f+

For a nth order differential equation need n independent solutions to Lf=0 to 

specify the complementary function

The number of independent

complementary functions is 

the number of integration 

constants – equal to the order

of the differential equation
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Second order linear equation with constant coefficients Solution
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Second order linear equation with constant coefficients
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Factorisation of operators
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Now we can see why the CF is made up of exponentials …. because :

This is equivalent to factorising the equation 
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Factorisation of operators and repeated roots
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Summary

2nd order linear ODEs: f ′′ + p(x)f ′ + q(x)f = h(x)

• General solution = PI + CF

• CF = c1u1 + c2u2

u1 and u2 linearly independent solutions

of the homogeneous equation

• Equations with constant coefficients:

⊲ Solve auxiliary equation to find complementary function CF
♦ distinct real roots

♦ repeated roots

♦ complex roots

⊲ Next: methods to find the particular integral PI


