Lecture 4

Roots of complex numbers

Characterization of a polynomial by its roots

Techniques for solving polynomial equations

ROOTS OF COMPLEX NUMBERS

Def.:

• A number u is said to be an n-th root of complex number z if $u^n = z$, and we write $u = z^{1/n}$.

Th.:

Every complex number has exactly n distinct n-th roots.

Let
$$z=r(\cos\theta+i\sin\theta);\ u=\rho(\cos\alpha+i\sin\alpha).$$
 Then
$$r(\cos\theta+i\sin\theta)=\rho^n(\cos\alpha+i\sin\alpha)^n=\rho^n(\cos n\alpha+i\sin n\alpha)$$
 $\Rightarrow \rho^n=r\ ,\quad n\alpha=\theta+2\pi k \qquad (k \text{ integer})$ Thus $\rho=r^{1/n}\ ,\quad \alpha=\theta/n+2\pi k/n\ .$

n distinct values for k from 0 to n-1. $(z \neq 0)$

So $u = z^{1/n} = r^{1/n} \left[\cos \left(\frac{\theta}{n} + \frac{2\pi k}{n} \right) + i \sin \left(\frac{\theta}{n} + \frac{2\pi k}{n} \right) \right]$, $k = 0, 1, \dots, n-1$

Note. $f(z) = z^{1/n}$ is a "multi-valued" function.

Example 1: nth roots of unity:

$$x^{n} = 1$$
 (i.e. $x^{n} - 1 = 0$)

$$\Rightarrow x = 1^{1/n}$$

$$1 = e^{2m\pi \iota} \implies 1^{1/n} = e^{2m\pi \iota/n}$$

$$= \cos(\frac{2m\pi}{n}) + \iota \sin(\frac{2m\pi}{n})$$

$$1^{1/5} = \cos(\frac{2m\pi}{5}) + \iota \sin(\frac{2m\pi}{5}) \quad (m = 0, 1, 2, 3, 4).$$

Example 2. Find all cubic roots of z=-1+i: $u=(-1+i)^{1/3}$

$$u = (\sqrt{2})^{1/3} \left[\cos \left(\frac{3\pi}{4} \frac{1}{3} + \frac{2\pi k}{3} \right) + i \sin \left(\frac{3\pi}{4} \frac{1}{3} + \frac{2\pi k}{3} \right) \right] , \quad k = 0, 1, 2$$

that is,

$$k = 0: 2^{1/6} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

$$k = 1: 2^{1/6} \left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right)$$

$$k = 2: 2^{1/6} \left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right)$$

• Equivalently:

$$u = (-1+i)^{1/3} = e^{(1/3)\ln(-1+i)} = e^{(1/3)[\ln\sqrt{2}+i(3\pi/4+2k\pi)]}$$
$$= (\sqrt{2})^{1/3}e^{i(\pi/4+2k\pi/3)}$$

Roots of polynomials

$$P(z) \equiv a_n z^n + a_{n-1} z^{n-1} + \dots + a_0.$$

$$P(z=z_i)=0$$
 $\Rightarrow z_i$ is a root

Characterising a polynomial by its roots ...the "fundamental theorem of algebra"

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 = a_n (z - z_1)(z - z_2) \dots (z - z_n)$$

In mathematics, the fundamental theorem of algebra states that every non-zero single-variable polynomial, with complex coefficients, has exactly as many complex roots as its degree, if repeated roots are counted up to their multiplicity.

[Gauss, 1799]

• proof of fundamental theorem of algebra is given in the course "Functions of a complex variable", Short Option S1

Roots of polynomials

$$P(z) \equiv a_n z^n + a_{n-1} z^{n-1} + \dots + a_0.$$

$$P(z=z_i)=0 \implies z_i \text{ is a root}$$

Characterising a polynomial by its roots

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 = a_n (z - z_1)(z - z_2) \dots (z - z_n)$$

$$= a_n (z^n - z^{n-1} \sum_{j=1}^n Z_j + \dots + (-1)^n \prod_{j=1}^n Z_j).$$

Comparing coefficients of zⁿ⁻¹ and z⁰

$$\frac{a_{n-1}}{a_n} = -\sum_j Z_j$$
 ; $\frac{a_0}{a_n} = (-1)^n \prod_j Z_j$

$$a_2 x^2 + a_1 x + a_0$$

$$x_{1,2} = \frac{\left(-a_1 \pm \sqrt{a_1^2 - 4a_2 a_0}\right)}{2a_2}$$

If complex, roots come in complex conjugate pairs

Sum of roots
$$\frac{a_1}{a_2} = -(x_1 + x_2)$$
 Product of roots $\frac{a_0}{a_2} = x_1.x_2$

for roots

General solutions not available for higher order polynomials (quartics and above)

Can find solutions in special cases....

Example 1:

$$z^5 + 32 = 0$$

• The solutions of the given equation are the fifth roots of -32:

$$(-32)^{1/5} = 32^{1/5} \left[\cos \left(\frac{\pi}{5} + \frac{2\pi k}{5} \right) + i \sin \left(\frac{\pi}{5} + \frac{2\pi k}{5} \right) \right] , \quad k = 0, 1, 2, 3, 4$$

that is,

$$k = 0: 2\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$$

$$k = 1: 2\left(\cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}\right)$$

$$k = 2: -2$$

$$k = 3: 2\left(\cos\frac{7\pi}{5} + i\sin\frac{7\pi}{5}\right)$$

$$k = 4: 2\left(\cos\frac{9\pi}{5} + i\sin\frac{9\pi}{5}\right)$$

Example 2: Roots of polynomials

$$(z+i)^{7} + (z-i)^{7} = 0$$

$$(\frac{z+i}{z-i})^{7} = -1 = e^{(2m+1)\pi i}$$

$$\Rightarrow \frac{z+i}{z-i} = e^{(2m+1)\pi i/7}$$

$$\Rightarrow z(1-e^{(2m+1)\pi i/7}) = -i(1+e^{(2m+1)\pi i/7})$$

$$\Rightarrow z = i\frac{e^{(2m+1)\pi i/7} + 1}{e^{(2m+1)\pi i/7} - 1}$$

$$= i\frac{e^{(2m+1)\pi i/14} + e^{-(2m+1)\pi i/14}}{e^{(2m+1)\pi i/14} - e^{-(2m+1)\pi i/14}} = i\frac{2\cos(\frac{2m+1}{14}\pi)}{2i\sin(\frac{2m+1}{14}\pi)} = \cot(\frac{2m+1}{14}\pi)$$

$$= 0.1, 2.3, 4.5, 6$$

Example 2: an alternative form

$$(z+i)^7 + (z-i)^7 = 0$$

We will often need the coefficient of $x^r y^{n-r}$ in $(x+y)^n$

These are conveniently obtained from Pascal's triangle:

$$(x+y)^{0} \qquad 1 \qquad 1 \qquad 1 \qquad \text{Solution:}$$

$$(x+y)^{2} \qquad 1 \qquad 2 \qquad 1 \qquad z = \cot(\frac{2m+1}{14}\pi)$$

$$(x+y)^{3} \qquad 1 \qquad 3 \qquad 3 \qquad 1$$

$$(x+y)^{4} \qquad 1 \qquad 4 \qquad 6 \qquad 4 \qquad 1$$

$$(x+y)^{5} \qquad 1 \qquad 5 \qquad 10 \qquad 10 \qquad 5 \qquad 1$$

$$7 \text{th row of Pascal's triangle is} \qquad 1 \qquad 7 \qquad 21 \quad 35 \quad 35 \quad 21 \quad 7 \quad 1 \qquad 50$$

$$(z+t)^{7} + (z-t)^{7} = 0 \implies z^{7} - 21z^{5} + 35z^{3} - 7z = 0$$

Example 2: yet another form

The original equation $(z+i)^7+(z-i)^7=0 \implies z^7-21z^5+35z^3-7z=0$ can be written in another form :

$$z^{7} - 21z^{5} + 35z^{3} - 7z = 0$$

$$\Rightarrow z^{6} - 21z^{4} + 35z^{2} - 7 = 0 \quad or \quad z = 0$$

$$\Rightarrow w^{3} - 21w^{2} + 35w - 7 = 0 \quad (w \equiv z^{2})$$

Hence the roots of
$$w^3 - 21w^2 + 35w - 7 = 0$$
 are

$$w = \cot^2(\frac{2m+1}{14}\pi)$$
 $(m = 0,1,2)$

Sum of roots
$$\Rightarrow \sum_{m=0}^{2} \cot^{2}(\frac{2m+1}{14}\pi) = 21$$

Pascal's triangle = table of binomial coefficients $\binom{n}{r}=\frac{n!}{r!(n-r)!}$ i.e., coefficients of x^ry^{n-r} in $(x+y)^n$

[Pascal, 1654]

• r-th element of n-th row given by sum of two elements above it in (n-1)-th row:

$$\begin{pmatrix} n \\ r \end{pmatrix} = \begin{pmatrix} n-1 \\ r-1 \end{pmatrix} + \begin{pmatrix} n-1 \\ r \end{pmatrix}$$
 [use $(x+y)^n = (x+y)^{n-1}x + (x+y)^{n-1}y$]

Historical note

- ♦ binomial coefficients already known in the middle ages:
- "Pascal's triangle" first discovered by Chinese mathematicians of 13th century to find coefficients of $(x+y)^n$
- $\bullet \left(\begin{array}{c} n \\ r \end{array}\right) = \frac{n!}{r!(n-r)!} \ \ \text{in Hebrew writings of 14th century is}$ number of combinations of n objects taken r at a time
- ♦ Pascal (1654) rediscovers triangle and most importantly unites algebraic and combinatorial viewpoints
 → theory of probability; proof by induction

Ex 3 Another example where the underlying equation is not obvious :

$$z^{3} + 7z^{2} + 7z + 1 = 0.$$

$$(x+y)^{0}$$

$$(x+y)^{1}$$

$$(x+y)^{2}$$

$$(x+y)^{3}$$

$$(x+y)^{4}$$

$$(x+y)^{4}$$

$$(x+y)^{5}$$

$$(x+y)^{5}$$

$$(x+y)^{6}$$

9th row of Pascal's triangle is 1 8 28 56 70 56 28 8 1 sc

$$\frac{1}{2}[(z+1)^8 - (z-1)^8] = 8z^7 + 56z^5 + 56z^3 + 8z$$
$$= 8z[w^3 + 7w^2 + 7w + 1] \quad (w = z^2).$$

Now
$$(z+1)^8 - (z-1)^8 = 0$$
 when $\frac{z+1}{z-1} = e^{2m\pi i/8}$

i.e. when
$$z = \frac{e^{m\pi i/4} + 1}{e^{m\pi i/4} - 1} = -i\cot(m\pi/8)$$
 $(m = 1, 2, ..., 7),$

so the roots of the given equation are

$$z = -\cot^2(m\pi/8)$$
 $m = 1, 2, 3$

Example

Question from 2008 Paper

Find all the solutions of the equation

$$\left(\frac{z+i}{z-i}\right)^n = -1\,,$$

and solve

$$z^4 - 10z^2 + 5 = 0.$$

$$\left(\frac{z+i}{z-i}\right)^n = -1 = e^{i(\pi+2N\pi)} , \quad N \text{ integer } \Rightarrow \frac{z+i}{z-i} = e^{i(\pi/n+2N\pi/n)} , \quad N = 0, 1, \dots, n-1$$

$$\text{Then: } z = i \; \frac{e^{i(\pi/n+2N\pi/n)} + 1}{e^{i(\pi/n+2N\pi/n)} - 1} = i \; \frac{\cos[\pi(1+2N)/(2n)]}{i \; \sin[\pi(1+2N)/(2n)]} = \cot g \; \frac{\pi(1+2N)}{2n} .$$

$$\text{For } n = 5 : \; (z+i)^5 = -(z-i)^5 \; \Rightarrow \; z(z^4-10z^2+5) = 0 \text{ . Then the 4 roots of } z^4-10z^2+5 = 0 \text{ are } z^4-1$$

$$\cot \frac{\pi}{10}$$
, $\cot \frac{3\pi}{10}$, $\cot \frac{7\pi}{10}$, $\cot \frac{9\pi}{10}$.

Ex 4 Show that

$$\frac{z^{2m}-a^{2m}}{z^2-a^2}=(z^2-2az\cos\frac{\pi}{m}+a^2)(z^2-2az\cos\frac{2\pi}{m}+a^2)\cdots(z^2-2az\cos\frac{(m-1)\pi}{m}+a^2).$$

i.e. Show that P(z) = Q(z) where

$$P(z) \equiv z^{2m} - a^{2m} \qquad \text{(Roots: } z_r = ae^{r\pi i/m}\text{)}$$

$$Q(z) \equiv (z^2 - a^2)(z^2 - 2az\cos\frac{\pi}{m} + a^2)(z^2 - 2az\cos\frac{2\pi}{m} + a^2)\cdots(z^2 - 2az\cos\frac{(m-1)\pi}{m} + a^2).$$

Roots
$$z_r = a\cos\frac{r\pi}{m} \pm \sqrt{a^2\cos^2\frac{r\pi}{m} - a^2}$$
$$= a(\cos\frac{r\pi}{m} \pm i\sqrt{1 - \cos^2\frac{r\pi}{m}}) = ae^{\pm ir\pi/m} \quad (r=0,1,...,m).$$

Leading coefficient $a_{2m} = 1$

P(z) and Q(z) identical

• This concludes part A of the course.

A. Complex numbers

- 1 Introduction to complex numbers
- 2 Fundamental operations with complex numbers
- 3 Elementary functions of complex variable
- 4 De Moivre's theorem and applications
- 5 Curves in the complex plane
- 6 Roots of complex numbers and polynomials