
Complex numbers and ordinary differential
equations

Michaelmas Term 2011

Lecturer: F Hautmann

• Part A: Complex numbers (∼ 4 lectures)

• Part B: Ordinary differential equations (∼ 6 lectures)

• printed lecture notes

• slides will be posted on lecture webpage: http://

www-thphys.physics.ox.ac.uk/people/FrancescoHautmann/Cp4/

• suggested problem sheets also on webpage
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A. Complex numbers

1 Introduction to complex numbers

2 Fundamental operations with complex numbers

3 Elementary functions of complex variable

4 De Moivre’s theorem and applications

5 Curves in the complex plane

6 Roots of complex numbers and polynomials



B. Ordinary differential equations

1 Introduction to differential equations and differential operators

2 First order ordinary differential equations

3 Second order linear ODEs

4 Systems of linear differential equations



Why complex nos?

•Natural numbers (positive integers) 1, 2, 3, . . .

•Negative integers  e.g. 20 + y = 12  y = -8 !

•Rationals 3
2

e.g. 4x = 6  x =  !

•Irrationals
2

e.g. x  = 2  x  = 2!

•Complex nos 2e.g. x  = -1 x = i -1! "

Introduction 



Complex numbers

where a and b are real

z = a + ib

 (Multiples of i (a=0) are called "pure imaginary" numbers.)

a  = Re(z), b  = Im(z)

“Real part” “Imaginary part” 

2(i 1)= !



Argand diagram

Each z= +i   point ( ) in a b a, pl b ane:!
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z = |z|(cos   + i sin  )
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Which quadrant? 
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Addition : 
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Multiplication 
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Polar co-ordinates 
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Historical note

♦ Imaginary unit i first introduced by algebrists of 16th century:

• Cardano 1540’s: quadratic equation x
2
= 10x− 40

• Bombelli 1570’s: cubic equation — really the first calculation manipulating

imaginary numbers; derived rules of addition and multiplication

♦ But not until Euler and Gauss (18th century) was power of complex
numbers really understood — dormant for nearly two centuries
[Gauss, 1799]: any polynomial of degree n has n roots in C.

♦ Geometric interpretation: Argand, 19th century
Complex ↔ ordered pair of real numbers: Hamilton, 19th century

♦ Theory of complex functions developed by
Cauchy, Riemann and others — mid 19th century [see S1 course]



Division 
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Modulus2  :  |z|2  !  zz* = (a2  + b2 ) is real (and > 0)
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z
1

z
2

=
r
1

r
2

cos(!
1
"!

2
) + isin(!

1
"!

2
)( )

Polar co-ordinates 

z
1
= r

1
(cos!

1
+ isin!

1
)

  
z

2
= r

2
(cos!

2
+ isin!

2
)



e.g. Find the modulus  |
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An application of complex algebra to plane geometry

i

p

r

s

q

2a

2b

2c

0

2d
Then
    segments joining the centres of 

Arbitrary quadrilateral. 
Construct squares on each side. 

and of equal length. 

2a+2b+2c+2d=0

Center p: a+a e = a(1+i) ; likewise q=2a+b(1+i)

r=2a+2b+c(1+i); s=2a+2b+2c+d(1+i)

r−p = a(1−i)+2b+c(1+i)

A and B perpendicular and of equal length means B=A e

i.e. B=iA, i.e. A+ i B=0. Verify that indeed A+iB=0. 

opposite squares are perpendicular

Thus A s−q = b(1−i)+2c+d(1+i); B .

2/πi

, 
π / 2



Homework

• If two integers can be expressed as the sum of two squares,

so can their product.
Prove this statement by using complex algebra.

Hint: Let n = n2
1 + n2

2 , m = m2
1 +m2

2 and show that nm = p2 + q2

for integer p, q .

To this end consider complex numbers n1 + in2, m1 + im2 and evaluate

|(n1 + in2)(m1 + im2)|
2.

• cos(α+ β) = cosα cos β − sinα sinβ

• sin(α + β) = sinα cos β + cosα sin β

Prove these trigonometric identities by complex methods.

Hint: start with ei(α+β) = eiαeiβ and use eiθ = cos θ + i sin θ.


