Functions of a complex variable (S1)

Problem sheet 4

I. Residue calculus (part 2)

1. (a) Use complex contour integration to compute

$$
I=\int_{0}^{\infty} \frac{1}{1+x^{3}} d x
$$

[Hint: Evaluate the integral of the complex-valued function $f(z)=1 /\left(1+z^{3}\right)$ round the contour Γ in Fig. 1 using residue theorem. Relate this result for $R \rightarrow \infty$ to the given integral I.]

Fig. 1
(b) Generalize the computation in (a) to calculate

$$
I_{n}=\int_{0}^{\infty} \frac{1}{1+x^{n}} d x
$$

for any $n \geq 2$. [Modify the contour in Fig. 1 so that the circular arc goes from R to $R e^{2 \pi i / n}$]
2. (a) Use complex contour integration to compute

$$
\int_{-\infty}^{+\infty} \frac{\sin x}{x} d x
$$

[Suggestion: Integrate the complex-valued function $f(z)=\exp (i z) / z$ round the contour Γ in the complex plane depicted in Fig. 2. Evaluate this integral using Cauchy theorem, then relate it to the given real-variable integral. Observe that while the contribution from the semicircle of radius R in Fig. 2 vanishes for $R \rightarrow \infty$, the contribution from the semicircle of radius r is non-vanishing for $r \rightarrow 0$.]
(b) Apply similar methods to compute

$$
\int_{-\infty}^{+\infty} \frac{\sin ^{2} x}{x^{2}} d x
$$

[Suggestion: Take the complex-valued function $f(z)=[\exp (2 i z)-1] / z^{2}$ and integrate along the same contour Γ as in Fig. 2.]

Fig. 2
3. Calculate the integral of the functions
(a) $\frac{\sin z}{z^{4}}$,
(b) $\frac{1}{z^{4} \sin z}$,
(c) $\frac{\cos z}{z^{4}}$,
(d) $\frac{\tan z}{z^{4}}$
round the circle with centre at the origin and radius 1 in the complex z plane.
4. Let C be the circle $|z|=4$ in the complex z plane. Consider the functions
(a) $f(z)=\frac{z+1}{z}$,
(b) $f(z)=\frac{1}{z^{2}}$.

For each of these functions f, determine the winding number of the image of C through f about the origin

$$
J=\frac{1}{2 \pi} \Delta_{C} \arg f(z)
$$

Then determine the number of poles P and number of zeros N of f inside C, including their multiplicity, and verify the argument principle, $J=N-P$.
5. Determine the number of roots of the equations

$$
\text { (a) } z^{7}-4 z^{3}+z-1=0, \quad \text { (b) } 3 z^{6}=e^{z}
$$

in the disk $|z|<1$.
6. Determine the number of roots of the equation

$$
2+z^{2}-e^{i z}=0
$$

in the upper half plane.
7. Calculate the sum of the following series

$$
\text { (a) } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}, \quad \text { (b) } \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}
$$

using complex contour integration methods.
8. Apply complex-plane techniques for integration in the presence of branch cuts to evaluate the following real integrals:

$$
\text { (a) } \int_{0}^{\infty} \frac{\sqrt{x}}{x^{2}+1} d x, \quad \text { (b) } \int_{0}^{\infty} \frac{\sqrt[3]{x}}{x^{2}+x} d x
$$

9. Apply complex-plane techniques for integration in the presence of branch cuts to evaluate the following real integrals:
(a) $\int_{0}^{\infty} \frac{\ln x}{\left(1+x^{2}\right)^{2}} d x$,
(b) $\int_{0}^{\infty} \frac{\ln \left(1+x^{2}\right)}{1+x^{2}} d x$.

II. Integral transforms

10. Calculate the integral

$$
\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{e^{i \omega t}}{\omega-i \varepsilon} d \omega
$$

for real negative t and for real positive t, with ε a positive real constant. Verify that this provides an integral representation for the step function $\Theta(t)[\Theta(t)=1$ for $t>0, \Theta(t)=0$ for $t<0]$.
11. Consider the rectangular pulse in Fig. 3a

$$
\text { (a) } f(x)=\Theta(1-|x|)
$$

and the triangular pulse in Fig. 3b

$$
\text { (b) } f(x)=(1-|x|) \Theta(1-|x|) \text {. }
$$

In each case, evaluate the Fourier transform

$$
\widetilde{f}(\omega)=\int_{-\infty}^{+\infty} d x e^{-i \omega x} f(x)
$$

Fig. 3
12. Calculate the Laplace transform

$$
F(z)=\int_{0}^{+\infty} d t e^{-z t} f(t)
$$

of the functions
(a) $f(t)=\sin t$,
(b) $f(t)=t \sin t$,
(c) $f(t)=\cosh t$.
13. Take the function

$$
F(z)=\frac{1}{\sqrt{z}} .
$$

Calculate the integral in the complex z plane

$$
f(t)=\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} e^{z t} F(z) d z \quad(a>0)
$$

which defines the inverse Laplace transform of $F(z)$. The integral runs along the straight line parallel to the imaginary axis and with real part $a(a>0)$. [Hint: Evaluate the integral round the closed path Γ in Fig. 4 by residue theorem, and relate it to the integral that defines $f(t)$.]

Fig. 4

14. Suppose the function $u(x, t)$ satisfies the differential equation

$$
\frac{\partial u}{\partial t}=\lambda \frac{\partial^{2} u}{\partial x^{2}}
$$

for $-\infty<x<\infty$ and $t \geq 0$, with the initial-value condition

$$
u(x, 0)=h(x),
$$

where λ is a real positive constant (diffusion coefficient) and $h(x)$ is a given function of x. Consider the Fourier transform of u with respect to x

$$
\widetilde{u}(p, t)=\int_{-\infty}^{+\infty} d x e^{-i p x} u(x, t)
$$

(a) Obtain the differential equation for $\widetilde{u}(p, t)$ and the corresponding initial-value condition.
(b) Write the solution of the initial-value problem for $\widetilde{u}(p, t)$.
(c) Determine the solution $u(x, t)$ of the starting equation as a Fourier convolution integral over the initial distribution $h(x)$.
15. Apply the Laplace transformation to determine the function $y(t)$ satisfying the equation

$$
y(t)+\int_{0}^{t} d t^{\prime}\left(t-t^{\prime}\right) y\left(t^{\prime}\right)=\sin 2 t, \quad t>0 .
$$

(a) First, Laplace-transform the equation and show that the second term on the left hand side of the equation gives $\widetilde{y}(z) / z^{2}$, where \widetilde{y} is the Laplace transform of y,

$$
\widetilde{y}(z)=\int_{0}^{+\infty} d t e^{-z t} y(t) .
$$

Determine the explicit expression for $\widetilde{y}(z)$.
(b) Next, find the solution for the function $y(t)$ by evaluating the inverse Laplace transform of $\widetilde{y}(z)$.

