Functions of a complex variable (S1)

Answers for Problem Sheet 2

1. (a) 1 and ∞ are 2 nd-order branch points; 1 to $+\infty$ on real axis is valid branch cut.
(b) 3 -sheeted, closed surface; three sheets R_{0}, R_{1}, R_{2} joined along cut $(1,+\infty)$; lower edge of cut in R_{2} joined back to upper edge of cut in R_{0}; images of 3 sheets are $0 \leq \arg w \leq 2 \pi / 3 ; 2 \pi / 3 \leq \arg w \leq 4 \pi / 3 ; 4 \pi / 3 \leq \arg w \leq 2 \pi$.
2. (a) 1 and -1 are ∞-order branch points; 1 to -1 on real axis is valid branch cut.
(b) $-i$ and ∞ are ∞-order branch points; $-i$ to $-i \infty$ on imaginary axis is valid branch cut.
(c) 1, -1 and ∞ are ∞-order branch points; $-\infty$ to -1 and 1 to $+\infty$ on real axis is valid branch cut.
3. (a) i and $-i$ are 1st-order branch points; (b) f restored to initial value;
(c) $z=\infty$ simple pole (no branch point); (d) The segment $-i$ to i on imaginary axis is valid branch cut. The Riemann surface is closed, made of two sheets joined along the cut; edges on opposite sides of cut from the two sheets are joined together.
$-i \infty$ to $-i$ and i to $+i \infty$ is also a valid branch cut.
4. (b) 1 and -1 are 1 st-order branch points; ∞ is ∞-order branch point;
(c) $f(3)=\pi / 2-i \ln (3+2 \sqrt{2}) ; \quad f^{\prime}(3)=-i / \sqrt{8}$.
5. $1,-1,0, \infty$ are 1 st-order branch points; -1 to 0 and 1 to $+\infty$ on real axis is valid branch cut.
6. $\quad f(-i)=2^{1 / 3}(\sqrt{3} / 2+i / 2), f^{\prime}(-i)=-2^{5 / 6} e^{-i \pi / 12} / 3$.
7. (a) $I=(2+11 i) / 3 \quad$ (b) $I_{1}=8 / 3, I_{2}=-2+11 i / 3$
(c) $I-I_{1}-I_{2}=0$, embodying Cauchy theorem (z^{2} holomorphic). $\Rightarrow I$ obtainable from primitive function $\left.\left(z^{3} / 3\right)\right|_{0} ^{2+i}$.
8. $\begin{array}{ll}\text { (a) } I=-i \pi & \text { (b) } I^{\prime}=i \pi\end{array}$
(c) $I^{\prime}-I=2 \pi i \neq 0\left(\bar{z}\right.$ not holomorphic). On circle $|z|=1, \bar{z}=1 / z \Rightarrow I^{\prime}-I$ must equal $\int_{|z|=1} d z / z=2 \pi i$.
9.

(a) 0
(b) $-e^{i \pi / 4} \sqrt{\pi} / 2$
(d) $\sqrt{\pi} /(2 \sqrt{2}), \sqrt{\pi} /(2 \sqrt{2})$
11. (a) $i \pi / 4$
(b) $-i \pi / 2$
12.
(a) $i \pi$
(b) 0
14. $(2 / \pi) \arctan (x / y)$
15.
(a) 2π
(b) 2π
(c) 0
16.
(a) 0
(b) 4π
17. (a) $-4 / 3$

