Functions of a complex variable (S1)

Answers for Problem Sheet 2

- 1. (a) 1 and ∞ are 2nd-order branch points; 1 to $+\infty$ on real axis is valid branch cut.
 - (b) 3-sheeted, closed surface; three sheets R₀, R₁, R₂ joined along cut (1, +∞); lower edge of cut in R₂ joined back to upper edge of cut in R₀; images of 3 sheets are 0 ≤ arg w ≤ 2π/3; 2π/3 ≤ arg w ≤ 4π/3; 4π/3 ≤ arg w ≤ 2π.
- 2. (a) 1 and -1 are ∞ -order branch points; 1 to -1 on real axis is valid branch cut.
 - (b) -i and ∞ are ∞ -order branch points; -i to $-i\infty$ on imaginary axis is valid branch cut.
 - (c) 1, -1 and ∞ are ∞ -order branch points; $-\infty$ to -1 and 1 to $+\infty$ on real axis is valid branch cut.
- 3. (a) i and -i are 1st-order branch points; (b) f restored to initial value;
 (c) z = ∞ simple pole (no branch point); (d) The segment -i to i on imaginary axis is valid branch cut. The Riemann surface is closed, made of two sheets joined along the cut; edges on opposite sides of cut from the two sheets are joined together.
 -i∞ to -i and i to +i∞ is also a valid branch cut.
- 4. (b) 1 and -1 are 1st-order branch points; ∞ is ∞ -order branch point; (c) $f(3) = \pi/2 - i \ln(3 + 2\sqrt{2}); f'(3) = -i/\sqrt{8}.$
- 5. 1, -1, 0, ∞ are 1st-order branch points; -1 to 0 and 1 to $+\infty$ on real axis is valid branch cut.

6.
$$f(-i) = 2^{1/3}(\sqrt{3}/2 + i/2), \ f'(-i) = -2^{5/6}e^{-i\pi/12}/3.$$

- 7. (a) I = (2+11i)/3 (b) $I_1 = 8/3$, $I_2 = -2 + 11i/3$ (c) $I - I_1 - I_2 = 0$, embodying Cauchy theorem (z^2 holomorphic). $\Rightarrow I$ obtainable from primitive function $(z^3/3)|_0^{2+i}$.
- 8. (a) $I = -i\pi$ (b) $I' = i\pi$ (c) $I' - I = 2\pi i \neq 0$ (\overline{z} not holomorphic). On circle |z| = 1, $\overline{z} = 1/z \Rightarrow I' - I$ must equal $\int_{|z|=1} dz/z = 2\pi i$.

10. (a) 0 (b)
$$-e^{i\pi/4}\sqrt{\pi}/2$$
 (d) $\sqrt{\pi}/(2\sqrt{2}), \sqrt{\pi}/(2\sqrt{2})$

- 11. (a) $i\pi/4$ (b) $-i\pi/2$
- 12. (a) $i\pi$ (b) 0
- 14. $(2/\pi) \arctan(x/y)$
- 15. (a) 2π (b) 2π (c) 0
- 16. (a) 0 (b) 4π
- 17. (a) -4/3