Functions of a complex variable (S1)

Problem sheet 2

I. Multi-valued functions; branch points and branch cuts

1. (a) Find the location and order of the branch points of the function

$$
w=(z-1)^{1 / 3}
$$

and describe a branch cut. (b) Describe a Riemann surface for this function, and determine the image of each Riemann sheet in the w plane.
2. For each of the following functions

$$
\text { (a) } \ln \left(\frac{z-1}{z+1}\right) \quad, \quad(b) \frac{\ln (z+i)}{1+z^{2}} \quad, \quad(c) \ln \left(z^{2}-1\right)
$$

find location and order of the branch points, and give a valid branch cut.
3. Consider the function

$$
f(z)=\sqrt{z^{2}+1}
$$

(a) Give location and order of the branch points of $f(z)$.
(b) Suppose evaluating f at the point $z=2+2 i$, then let z vary along the circle passing through $2+2 i$ with centre at the origin, moving counterclockwise. When a full 2π cycle is completed by returning to the point $z=2+2 i$, determine whether or not f is restored to its initial value.
(c) Classify the behaviour of $f(z)$ at the point $z=\infty$.
(d) Describe a valid branch cut for $f(z)$ and the Riemann surface.
4. (a) Show that the inverse sine function $f(z)=\arcsin z$ is given by

$$
f(z)=\arcsin z=\frac{1}{i} \ln \left(i z+\sqrt{1-z^{2}}\right)
$$

(b) Give the location and order of the branch points of this function.
(c) Consider the branch of $f(z)=\arcsin z$ defined using the branch cuts in Fig. 1, taking the principal branch of the logarithm and the branch of the square root such that $\sqrt{1-z^{2}}=1$ when $z=0$. Determine the value of $f(z)$ and of its derivative $f^{\prime}(z)$ at the point $z=3$.

Fig. 1
5. Give the location and order of the branch points of the function

$$
f(z)=\sqrt{z\left(z^{2}-1\right)}
$$

and describe a valid branch cut.
6. Suppose that a branch of the function

$$
f(z)=(z-1)^{2 / 3}
$$

is defined by means of the branch cut in Fig. 2 and that it takes the value 1 when $z=0$. Determine the value of $f(z)$ and of its derivative $f^{\prime}(z)$ at the point $z=-i$.

Fig. 2

II. Complex integration

7. (a) Calculate the integral

$$
I=\int_{L} z^{2} d z
$$

where L is the straight-line segment in the complex z plane from point $z=0$ to point $z=2+i$.
(b) Calculate the integrals

$$
I_{1}=\int_{L_{1}} z^{2} d z, \quad I_{2}=\int_{L_{2}} z^{2} d z
$$

where L_{1} is the straight-line segment in the complex z plane from point $z=0$ to point $z=2$, and L_{2} is the straight-line segment from point $z=2$ to point $z=2+i$.
(c) Evaluate the difference of the integrals calculated above, $I-I_{1}-I_{2}$, and interpret the result.
8. (a) Calculate the integral

$$
I=\int_{\gamma} \bar{z} d z
$$

where γ is the semicircle in the upper half z plane with centre at the origin and radius 1 , traveled clockwise.
(b) Calculate the integral

$$
I^{\prime}=\int_{\gamma^{\prime}} \bar{z} d z
$$

where γ^{\prime} is the semicircle in the lower half z plane with centre at the origin and radius 1 , traveled counterclockwise.
(c) Evaluate the difference of the integrals calculated above, $I^{\prime}-I$, and interpret the result.
9. Let I_{n} be the complex integral

$$
I_{n}=\oint_{C_{a, r}}(z-a)^{n} d z
$$

where $C_{a, r}$ is the circle of centre a and radius r, and n is an integer. Show by direct computation that $I_{n}=0$ for $n \neq-1$, and $I_{n}=2 \pi i$ for $n=-1$.
10. Consider the integral of the function $f(z)=e^{i z^{2}}$ round the closed path Γ in the complex z plane given in Fig. 3:

$$
\oint_{\Gamma} e^{i z^{2}} d z
$$

(a) Evaluate this integral for arbitrary $R>0$ in Fig. 3.
(b) Consider the integral of f along the straight-line segment joining the points $z=R e^{i \pi / 4}$ and

Fig. 3

$z=0$ in Fig. 3. Evaluate this integral for $R \rightarrow \infty$.
(c) Consider the integral of f along the circular arc in Fig. 3 between the points $z=R$ and $z=R e^{i \pi / 4}$. Use the Darboux inequality to show that this integral vanishes for $R \rightarrow \infty$.
(d) Use the results in (a), (b), (c) to compute the real integrals

$$
\int_{0}^{\infty} d x \cos x^{2}, \quad \int_{0}^{\infty} d x \sin x^{2} \quad \text { (Fresnel integrals). }
$$

11. Use Cauchy integral formulas to determine the value of

$$
\text { (a) } \oint_{\Gamma} d z \frac{\cos z}{z\left(z^{2}+8\right)} \quad, \quad \text { (b) } \oint_{\Gamma} d z \frac{z}{2 z+1}
$$

where Γ is a square with centre at the origin and sides of length 2 .
12. Use Cauchy integral formulas to determine the value of

$$
\text { (a) } \oint_{\gamma} d z \frac{e^{z}}{z^{3}} \quad, \quad \text { (b) } \oint_{\gamma} d z \frac{\cosh z}{z^{4}}
$$

where γ is the circle $|z-1|=2$.
13. Show that if function f is holomorphic over the entire complex plane and is bounded (i.e., for any $z,|f(z)| \leq M$ for a real constant $M)$ then f must be constant. [Consider Cauchy integral formula for the first derivative of f. Apply Darboux inequality to it.]
14. Apply Poisson integral formula to determine a function $u(x, y)$ that is harmonic in the upper half plane,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad, \quad y>0
$$

and obeys the following Dirichlet boundary condition on the real axis:

$$
u(x, 0)=c(x), \quad \text { with } c(x)=1 \text { for } x>0, c(x)=-1 \text { for } x<0
$$

15. Use Gauss' mean value theorem to compute the following integrals:

$$
\begin{gathered}
\text { (a) } \int_{0}^{2 \pi} \cos (\cos \theta+i \sin \theta) d \theta \\
\text { (b) } \int_{0}^{2 \pi} \cos (\cos \theta) \cosh (\sin \theta) d \theta, \quad \text { (c) } \int_{0}^{2 \pi} \sin (\cos \theta) \sinh (\sin \theta) d \theta
\end{gathered}
$$

16. Verify that the following functions are harmonic
(a) $f_{1}(x, y)=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$
(b) $f_{2}(x, y)=2\left(1+x^{2}-y^{2}\right)+3 x^{2} y-y^{3}$
and determine their integral round the circle in the $x y$ plane with centre at the origin and radius 1.
17. Take the principal branch of the square root function $f(z)=\sqrt{z}$

$$
\sqrt{z}=\sqrt{r} e^{i \theta / 2}
$$

defined with θ between 0 and $2 \pi\left(z=r e^{i \theta}\right)$ setting the branch cut from 0 to ∞ on the real positive semiaxis.
(a) Evaluate the integral of \sqrt{z} on the circle $|z|=1$.
[Suggestion: Consider the integral of \sqrt{z} on the contour Γ in Fig. 4 and apply Cauchy theorem to this. Write down the relationship between the integral of \sqrt{z} on Γ and the integral of \sqrt{z} on the circle $|z|=1$, taking the limit in which the radius ε of the inner circle in Fig. 4 goes to 0 . Compute explicitly the contributions from the integrations along the straight-line segments above and below the branch cut.]

Fig. 4
(b) Next consider the integral of \sqrt{z} on any path in the upper half plane joining the points $z=-1$ and $z=1$,

$$
\int_{-1}^{1} \sqrt{z} d z
$$

and the integral on any path in the lower half plane joining the same two points $z=-1$ and $z=1$. Show that the results are different and are given respectively by $2(1+i) / 3$ and $2(-1+i) / 3$. Use this as a cross-check on the result of part (a).

