Functions of a complex variable (S1)

Problem sheet 1

I. Complex numbers; elementary functions; sets in the complex plane

1. Determine all fifth roots of unity: $w=\sqrt[5]{1}$.
2. Determine all cubic roots of $z=i-1$: $w=(i-1)^{1 / 3}$.
3. Solve the equation $(z+i)^{5}+(z-i)^{5}=0$.
4. Find the real and imaginary parts of (a) $\cos i$ and (b) $\sin i$.
5. Verify that for any two complex numbers z_{1} and z_{2}

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \quad, \quad\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \quad \text { ("triangle inequalities"). }
$$

6. Solve the equations
(a) $e^{z}=-1$,
(b) $e^{z}=-2$,
(c) $\sinh z=0$,
(d) $\sin z=3$.
7. Draw the curves in the complex z plane
(a) $|z-1|=1$,
(b) $(\operatorname{Re} z)^{2}+2(\operatorname{Im} z)^{2}=1$,
(c) $\operatorname{Im} z^{2}=2$.
8. Find all the values of
(a) i^{i},
(b) $(1+i)^{i}$,
(c) $(-1)^{1 / \pi}$.
9. Find the real and imaginary parts of the principal branch of the logarithm of
(a) $z=1-i$,
(b) $z=1+i \quad$,
(c) $z=i$.
10. Consider the set $S=\left\{\frac{i}{n}: n=1,2, \ldots\right\}$ in the complex plane. (a) What are the limit points of S ? (b) What are the interior and boundary points of S ? (c) State whether or not S is open; closed; bounded; connected; compact.

II. Complex differentiation; holomorphic functions

11. Show that the function $f(z)=z^{2}$ is holomorphic in the entire complex plane, while the function $f(z)=|z|^{2}$ is holomorphic nowhere.
12. Determine the subsets of the complex z plane in which each of the following functions is holomorphic,
(a) $\frac{1}{e^{z}-1}$,
(b) $\frac{1}{\left(1+z^{2}\right)^{2}}$,
(c) $\cos \bar{z}$,
(d) $\tan z$,
and calculate the derivative of each function in its region of holomorphy.
13. Let the function f be holomorphic on the domain D in \mathbb{C}.
(a) Show that if f is real-valued then f must be constant.
(b) Show that if $|f|$ is constant then f must be constant.
14. (a) Determine which of the following functions $u(x, y)$ are harmonic:
(i) $x^{2}-y^{2}-x$,
(ii) $\sin x \cosh y$,
(iii) $e^{-x} \cos y+x y$,
(iv) $\sin x-\cos y, \quad(\mathrm{v}) x-y$.
(b) For each of the harmonic functions above, find a holomorphic function of which it is the real part, and find a harmonic conjugate function $v(x, y)$.
15. Take real-valued function u on domain D in $\mathbb{C}, u: D \rightarrow \mathbb{R}$. Let u be harmonic on D. Show that if u^{2} is harmonic on D then u is constant.
16. (a) Find the holomorphic function whose imaginary part is given by

$$
e^{-x}(x \cos y+y \sin y)
$$

and which vanishes at the origin.
(b) Determine the family of curves in the $x y$ plane which are orthogonal to the curves

$$
e^{-x}(x \cos y+y \sin y)=\text { const. }
$$

17. Locate and classify the singular points of the following functions, and determine whether they are isolated:
(a) $\frac{\cos z}{(z+i)^{3}}$,
(b) $\frac{z^{2}}{\left(z^{2}-1\right)\left(z^{2}+4\right)}$,
(c) $\frac{1}{\sin 1 / z}$.
18. Classify the behaviour of the following functions at $z=\infty$:
(a) $z\left(1+z^{2}\right)$,
(b) e^{z},
(c) $\frac{1+z^{2}}{z^{2}}$.
19. Consider the mapping specified by the function

$$
f: z \mapsto w=z+\frac{1}{z} .
$$

(a) Give the subset of the complex z plane in which f is holomorphic.
(b) Determine whether the mapping is conformal in the region of holomorphy.
(c) Onto which subset of the w plane does f map the upper half and lower half of circle $|z|=1$?
(d) What is the image through f of a circle $|z|=\rho$ with $\rho \neq 1$?
20. Consider the mapping specified by the function

$$
f: z \mapsto w=\frac{i-z}{i+z} .
$$

(a) Is the mapping conformal?
(b) What is the image through f of the real axis $z=x$?
(c) Onto which subset of the w plane does f map the upper half plane $\operatorname{Im} z>0$?

