Functions of a complex variable (S1)

Problem sheet 1

I. Complex numbers; elementary functions; sets in the complex plane

- 1. Determine all fifth roots of unity: $w = \sqrt[5]{1}$.
- 2. Determine all cubic roots of z = i 1: $w = (i 1)^{1/3}$.
- 3. Solve the equation $(z+i)^5 + (z-i)^5 = 0$.
- 4. Find the real and imaginary parts of (a) $\cos i$ and (b) $\sin i$.
- 5. Verify that for any two complex numbers z_1 and z_2

$$|z_1 + z_2| \le |z_1| + |z_2|$$
, $|z_1 + z_2| \ge ||z_1| - |z_2||$ ("triangle inequalities")

6. Solve the equations

(a)
$$e^z = -1$$
 , (b) $e^z = -2$, (c) $\sinh z = 0$, (d) $\sin z = 3$.

7. Draw the curves in the complex z plane

(a) |z-1| = 1 , (b) $(\text{Re } z)^2 + 2 \ (\text{Im } z)^2 = 1$, (c) $\text{Im } z^2 = 2$.

8. Find all the values of

(a)
$$i^i$$
 , (b) $(1+i)^i$, (c) $(-1)^{1/\pi}$

9. Find the real and imaginary parts of the principal branch of the logarithm of

(a)
$$z = 1 - i$$
 , (b) $z = 1 + i$, (c) $z = i$

10. Consider the set S = { i/n : n = 1, 2, ... } in the complex plane. (a) What are the limit points of S? (b) What are the interior and boundary points of S? (c) State whether or not S is open; closed; bounded; connected; compact.

II. Complex differentiation; holomorphic functions

- 11. Show that the function $f(z) = z^2$ is holomorphic in the entire complex plane, while the function $f(z) = |z|^2$ is holomorphic nowhere.
- 12. Determine the subsets of the complex z plane in which each of the following functions is holomorphic,

(a)
$$\frac{1}{e^z - 1}$$
 , (b) $\frac{1}{(1 + z^2)^2}$, (c) $\cos \overline{z}$, (d) $\tan z$,

and calculate the derivative of each function in its region of holomorphy.

- 13. Let the function f be holomorphic on the domain D in \mathbb{C} .
 - (a) Show that if f is real-valued then f must be constant.
 - (b) Show that if |f| is constant then f must be constant.
- 14. (a) Determine which of the following functions u(x, y) are harmonic:

(i) $x^2 - y^2 - x$, (ii) $\sin x \cosh y$, (iii) $e^{-x} \cos y + xy$, (iv) $\sin x - \cos y$, (v) x - y.

(b) For each of the harmonic functions above, find a holomorphic function of which it is the real part, and find a harmonic conjugate function v(x, y).

- 15. Take real-valued function u on domain D in \mathbb{C} , $u: D \to \mathbb{R}$. Let u be harmonic on D. Show that if u^2 is harmonic on D then u is constant.
- 16. (a) Find the holomorphic function whose imaginary part is given by

$$e^{-x}(x\cos y + y\sin y)$$

and which vanishes at the origin.

(b) Determine the family of curves in the xy plane which are orthogonal to the curves

$$e^{-x}(x\cos y + y\sin y) = \text{const.}$$
.

17. Locate and classify the singular points of the following functions, and determine whether they are isolated:

(a)
$$\frac{\cos z}{(z+i)^3}$$
, (b) $\frac{z^2}{(z^2-1)(z^2+4)}$, (c) $\frac{1}{\sin 1/z}$

18. Classify the behaviour of the following functions at $z = \infty$:

(a)
$$z(1+z^2)$$
, (b) e^z , (c) $\frac{1+z^2}{z^2}$.

19. Consider the mapping specified by the function

$$f: z \mapsto w = z + \frac{1}{z} .$$

- (a) Give the subset of the complex z plane in which f is holomorphic.
- (b) Determine whether the mapping is conformal in the region of holomorphy.
- (c) Onto which subset of the w plane does f map the upper half and lower half of circle |z| = 1?
- (d) What is the image through f of a circle $|z| = \rho$ with $\rho \neq 1$?
- 20. Consider the mapping specified by the function

$$f: \ z \mapsto w = \frac{i-z}{i+z} \quad .$$

- (a) Is the mapping conformal?
- (b) What is the image through f of the real axis z = x?
- (c) Onto which subset of the w plane does f map the upper half plane Im z > 0?