III. MULTI-VALUED FUNCTIONS

Ex.:
$$\ln z = \ln |z| + i(\theta + 2\pi n)$$
, $n = 0, \pm 1, \pm 2, ...$

ullet γ closed path encircling z=0. Start at z_0 and let z vary along γ .

after full cycle:
$$(\ln z_0)_{final} = (\ln z_0)_{initial} + 2\pi i \neq (\ln z_0)_{initial}$$

$$\uparrow \\ z = 0 \text{ branch point}$$

Note: $z = \infty$ is also branch point for $\ln z$.

• Imagine "cutting" the complex plane along a line joining the branch points:

• Define sequence of single-valued functions in "cut" plane:

$$f_n(z) = f_n(r,\theta) = \ln r + i(\theta + 2\pi n)$$
, $-\pi \le \theta \le \pi$ $(n = 0, \pm 1, \pm 2, ...)$

Each is discontinuous across the cut:

$$\lim_{\varepsilon \to 0} [f_n(r, \pi - \varepsilon) - f_n(r, -\pi + \varepsilon)] = 2\pi i$$

ullet On the other hand, f_n above the cut $=f_{n+1}$ below the cut:

$$\lim_{\varepsilon \to 0} f_n(r, \pi - \varepsilon) = \lim_{\varepsilon \to 0} f_{n+1}(r, -\pi + \varepsilon)$$

• Construct Riemann surface = stack of cut complex planes, joined along the cut. \Rightarrow single-valued f defined on Riemann surface

RIEMANN SURFACE

- Helix-like superposition of "cut" planes, with upper edge of cut in n-th plane joined with lower edge of cut in (n+1)-th plane. Each plane is "Riemann sheet".
- $\triangleright \ln z$ single-valued and holomorphic, except at branch point, on Riemann surface.

Classification of branch points

 \Diamond branch point of order n: if the function is restored to the starting value by taking n+1 cycles around it

Ex.: \sqrt{z} branch point of order 1; $\sqrt[3]{z}$ branch point of order 2

 \Diamond branch point of order ∞ : if successive cycles around it bring us further and further away from initial Riemann sheet

Ex.: $\ln z$ branch point of order ∞

Note 3 distinct representations:

- multi-valued function on complex plane
- sequence of single-valued, discontinuous functions on "cut" plane
 - one single-valued, continuous function on Riemann surface

ROOT FUNCTIONS AND THEIR RIEMANN SURFACES

 $f(z) = z^{1/2}$: z=0, z=infinity are branch points.

Note: Riemann surface for $f(z)=z^{1/n}$ is a closed, n—sheeted surface. The n—th sheet is reconnected to the first sheet.

RIEMANN SURFACE OF $f(z) = \sqrt{z^2 - 1}$

z=1 and z=-1 are branch points. z=infinity is not branch point.

Valid branch cuts:

• Riemann surface is a closed, 2-sheeted surface such that any cycle surrounding one of the branch points brings us to a new sheet, whereas any cycle surrounding both branch points restores f to initial value.

$$f(z) = z^{1/2}(z-1)^{1/2}$$

z=0, z=1 are 1st-order branch points

Valid branch cuts:

Note:
$$f(z) = z^{1/3}(z-1)^{1/3}$$

has 2nd-order branch points at z=0, z=1, $z=\infty$; cuts (a) and (b) above are valid cuts for this function as well, while (c) is not.

NOTE

• In practical applications, you may be able to tell on which Riemann sheet you are sitting by knowing the value of the function at one point.

Example

Suppose that a branch of the function

$$f(z) = (z - 1)^{2/3}$$

is defined by means of the branch cut in Fig. 2 and that it takes the value 1 when z=0. Determine the value of f(z) and of its derivative f'(z) at the point z=-i.

$$-\pi/2 < \theta < 3\pi/2 \qquad Im z$$

$$z$$

$$z - 1 = |z - 1| e$$

$$i \theta$$
Re z

$$f(z) = (z-1)^{2/3} = |z-1|^{2/3} e^{i2\theta/3} e^{i4\pi n/3}$$
, $n = 0, 1, 2$

$$f(z=0) = 1 \implies f(z=0) = e^{i\pi 2/3} e^{i4\pi n/3} = 1 \implies n = 1$$

Then
$$f(z = -i) = |-i - 1|^{2/3} e^{i(5\pi/4)2/3} e^{i4\pi/3} = 2^{1/3} \left(\sqrt{3}/2 + i/2\right)$$

 $f'(z) = \frac{2}{3} (z - 1)^{-1/3} \implies f'(z = -i) = \frac{2}{3} |-i - 1|^{-1/3} e^{-i(5\pi/4)/3} e^{-i2\pi/3}$
 $= -2^{5/6} \left(\cos \pi/12 - i\sin \pi/12\right)/3$

INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

$$\arccos z = \frac{1}{i} \ln(z + \sqrt{z^2 - 1})$$

has branch points of order 1 at z=1, z=-1 and branch point of order ∞ at $z=\infty$.

Valid cuts are semi-infinite lines stretching from ± 1 out to ∞ .

- arccos z has two infinite sets of values for each value of $z \neq \pm 1$: two possible values of square root and, for each, infinitely many values of log.
 - \diamondsuit Similarly for the other trigonometric and hyperbolic inverse functions.

Summary

Multi-valued functions can be characterized through their branch points
 by specifying a valid set of branch cuts.

order n-f restored to starting value by taking n+1 cycles around it order $\infty-f$ never restored to starting value by successive cycles

Riemann surfaces provide a setting for defining complex functions —
 more natural than complex plane itself