## III. MULTI-VALUED FUNCTIONS

Ex. : $\quad \ln z=\ln |z|+i(\theta+2 \pi n) \quad, \quad n=0, \pm 1, \pm 2, \ldots$

- $\gamma$ closed path encircling $z=0$. Start at $z_{0}$ and let $z$ vary along $\gamma$.

after full cycle: $\left(\ln z_{0}\right)_{\text {final }}=\left(\ln z_{0}\right)_{\text {initial }}+2 \pi i \neq\left(\ln z_{0}\right)_{\text {initial }}$

$$
z=\begin{gathered}
\Uparrow \\
z=0
\end{gathered}
$$

Note: $z=\infty$ is also branch point for $\ln z$.

- Imagine "cutting" the complex plane along a line joining the branch points:

- Define sequence of single-valued functions in "cut" plane:

$$
f_{n}(z)=f_{n}(r, \theta)=\ln r+i(\theta+2 \pi n), \quad-\pi \leq \theta \leq \pi \quad(n=0, \pm 1, \pm 2, \ldots)
$$

- Each is discontinuous across the cut:

$$
\lim _{\varepsilon \rightarrow 0}\left[f_{n}(r, \pi-\varepsilon)-f_{n}(r,-\pi+\varepsilon)\right]=2 \pi i
$$

- On the other hand, $f_{n}$ above the cut $=f_{n+1}$ below the cut:

$$
\lim _{\varepsilon \rightarrow 0} f_{n}(r, \pi-\varepsilon)=\lim _{\varepsilon \rightarrow 0} f_{n+1}(r,-\pi+\varepsilon)
$$

- Construct Riemann surface $=$ stack of cut complex planes, joined along the cut.
$\Rightarrow$ single-valued $f$ defined on Riemann surface


## RIEMANN SURFACE

- Helix-like superposition of "cut" planes, with upper edge of cut in $n$-th plane joined with lower edge of cut in $(n+1)$-th plane. Each plane is "Riemann sheet".
$\triangleright \ln z$ single-valued and holomorphic, except at branch point, on Riemann surface.
$w=\ln z$ maps
Riemann sheets
$R_{0}, R_{1}, \ldots$ onto
horizontal strips:



A cycle around a branch point makes us move to another
Riemann sheet.
$\leftarrow \mathrm{f}\left(\mathrm{R}_{1}\right)$
$\leftarrow \mathrm{f}\left(\mathrm{R}_{0}\right)$

## Classification of branch points

$\diamond$ branch point of order $n$ : if the function is restored to the
starting value by taking $n+1$ cycles around it
Ex.: $\sqrt{z}$ branch point of order $1 ; \sqrt[3]{z}$ branch point of order 2
$\diamond$ branch point of order $\infty$ : if successive cycles around it bring us further and further away from initial Riemann sheet

Ex.: $\ln z$ branch point of order $\infty$

## Note 3 distinct representations:

- multi-valued function on complex plane
- sequence of single-valued, discontinuous functions on "cut" plane
- one single-valued, continuous function on Riemann surface


## ROOT FUNCTIONS AND THEIR RIEMANN SURFACES

$$
f(z)=z^{1 / 2}: z=0, z=\text { infinity are branch points. }
$$



Note : Riemann surface for $f(z)=z^{1 / n}$ is a closed, $n$-sheeted surface.
The n -th sheet is reconnected to the first sheet.

## RIEMANN SURFACE OF $f(z)=\sqrt{z^{2}-1}$



$$
\begin{aligned}
& z=1 \text { and } z=-1 \text { are branch points. } \\
& z=\text { infinity is not branch point. }
\end{aligned}
$$

Valid branch cuts:


- Riemann surface is a closed, 2 -sheeted surface such that any cycle surrounding one of the branch points brings us to a new sheet, whereas any cycle surrounding both branch points restores $f$ to initial value.

$$
\begin{gathered}
f(z)=z^{1 / 2}(z-1)^{1 / 2} \\
z=0, z=1 \text { are 1st-order branch points }
\end{gathered}
$$

Valid branch cuts:


$$
\text { Note : } f(z)=z^{1 / 3}(z-1)^{1 / 3}
$$

has 2 nd-order branch points at $z=0, z=1, z=\infty$; cuts (a) and (b) above are valid cuts for this function as well, while (c) is not.

## NOTE

- In practical applications, you may be able to tell on which Riemann sheet you are sitting by knowing the value of the function at one point.


## Example

Suppose that a branch of the function

$$
f(z)=(z-1)^{2 / 3}
$$

is defined by means of the branch cut in Fig. 2 and that it takes the value 1 when $z=0$. Determine the value of $f(z)$ and of its derivative $f^{\prime}(z)$ at the point $z=-i$.


Fig. 2

$$
\begin{gathered}
-\pi / 2 \leqslant \theta<3 \pi / 2 \quad \operatorname{Imz} \mid \\
z-1=|z-1| e^{i \theta} \quad \mid \\
f(z)=(z-1)^{2 / 3}=|z-1|^{2 / 3} e^{i 2 \theta / 3} e^{i 4 \pi n / 3}, n=0,1,2 \\
f(z=0)=1 \Longrightarrow \quad f(z=0)=e^{i \pi 2 / 3} e^{i 4 \pi n / 3}=1 \Longrightarrow n=1
\end{gathered}
$$

Then $\quad f(z=-i)=|-i-1|^{2 / 3} e^{i(5 \pi / 4) 2 / 3} e^{i 4 \pi / 3}=2^{1 / 3}(\sqrt{3} / 2+i / 2)$

$$
\begin{aligned}
f^{\prime}(z)=\frac{2}{3}(z-1)^{-1 / 3} \Longrightarrow f^{\prime}(z & =-i)=\frac{2}{3}|-i-1|^{-1 / 3} e^{-i(5 \pi / 4) / 3} e^{-i 2 \pi / 3} \\
& =-2^{5 / 6}(\cos \pi / 12-i \sin \pi / 12) / 3
\end{aligned}
$$

## INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

$$
\arccos z=\frac{1}{i} \ln \left(z+\sqrt{z^{2}-1}\right)
$$

has branch points of order 1 at $z=1, z=-1$ and branch point of order $\infty$ at $z=\infty$.
Valid cuts are semi-infinite lines stretching from $\pm 1$ out to $\infty$.


- $\arccos z$ has two infinite sets of values for each value of $z \neq \pm 1$ : two possible values of square root and, for each, infinitely many values of log.
$\diamond$ Similarly for the other trigonometric and hyperbolic inverse functions.


## Summary

$\diamond$ Multi-valued functions can be characterized through their branch points by specifying a valid set of branch cuts.
order $n-f$ restored to starting value by taking $n+1$ cycles around it order $\infty-f$ never restored to starting value by successive cycles
$\diamond$ Riemann surfaces provide a setting for defining complex functions more natural than complex plane itself

