Functions of a complex variable (S1) Lecture 3

CAUCHY-RIEMANN EQUATIONS

f = u + iv holomorphic $\Leftrightarrow u$, v contin. differentiable and

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

i.e. $\overline{\partial} f = 0 \qquad [\overline{\partial} \equiv \partial/\partial \overline{z} = (\partial/\partial x + i\partial/\partial y)/2]$

• f holomorphic $\Rightarrow f$ continuous

• f, g holomorphic $\Rightarrow c_1 f + c_2 g$, fg, $f \circ g$ holomorphic

- For holomorphic f, f real-valued $\Rightarrow f$ constant
- For holomorphic f, |f| constant $\Rightarrow f$ constant

Harmonic functions

 $\begin{aligned} f &= u + iv \text{ holomorphic} \\ \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} \ , \quad \frac{\partial v}{\partial x} &= -\frac{\partial u}{\partial y} \end{aligned}$

Take derivative of 1st equation wrt x, derivative of 2nd equation wrt y, and subtract:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x} = 0$$

▷ Similarly:

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Thus: f = u + iv holomorphic $\Rightarrow u, v$ harmonic:

$$\Delta u = 0 \quad , \quad \Delta v = 0$$

A converse applies in the sense that given a harmonic function u, I can use Cauchy-Riemann to find

another harmonic function v such that u + iv is holomorphic.

harmonic conjugate

Example

K

Given
$$u(x,y) = xy$$

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = y \Rightarrow v(x,y) = \frac{y^2}{2} + c(x)$$

 $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -x \Rightarrow v(x,y) = \frac{y^2}{2} - \frac{x^2}{2} + \text{ const.} \quad \text{harmonic conjugate}$

$$\Rightarrow f(z) = u + iv = xy + i\left(\frac{y^2}{2} - \frac{x^2}{2} + \text{ const.}\right) = -\frac{i}{2} z^2 + \text{ const. holomorphic}$$

CONFORMAL MAPPING

• For every point z where f is holomorphic and $f' \neq 0$, the mapping $z \mapsto w = f(z)$ is <u>conformal</u>, i.e., it preserves angles.

 \diamond A particular case of this:

CONFORMALITY = CONSERVATION OF ANGLES

 \diamond If C_1 and C_2 are two curves in the z plane intersecting at z_0 with angle ν , f holomorphic with $f' \neq 0 \Rightarrow$ the images through f, C'_1 and C'_2 , of the curves C_1 and C_2 intersect with angle

$$\nu' = \nu$$

Proof

Let z be generic point on C_1 ; w its image on C'_1 .

• Set
$$z - z_0 = re^{i\theta}$$
, $w - w_0 = r'e^{i\theta'}$, $f'(z_0) = |f'(z_0)|e^{i\psi_0}$,
and consider $\frac{w - w_0}{z - z_0} = \frac{r'}{r} e^{i(\theta' - \theta)}$.

• For $z \to z_0$ along C_1 , $\theta \to \alpha_1$, $\theta' \to \beta_1 \Rightarrow \psi_0 = \beta_1 - \alpha_1$. By the same reasoning for $z \to z_0$ along C_2 , $\psi_0 = \beta_2 - \alpha_2$.

> Hence $\beta_1 - \alpha_1 = \beta_2 - \alpha_2$. $\Rightarrow \nu = \alpha_2 - \alpha_1 = \beta_2 - \beta_1 = \nu'$

 $f: z \mapsto w = f(z)$ holomorphic with $f'(z_0) \neq 0$:

♠ Tangent vectors dz to each curve at z₀ are transformed into vectors dw at w₀ = f(z₀) which are
• magnified by factor |f'(z₀)|
• rotated through angle ψ₀ = arg f'(z₀)
⇒ angles between curves remain the same (conformal mapping)

Behaviour at critical points $f'(z_0) = 0$:

• $f(z_0) = w_0$; $f'(z_0) = \ldots = f^{(m-1)}(z_0) = 0$, $f^{(m)}(z_0) \neq 0$ \Rightarrow angle between any two curves at z_0 is multiplied by munder mapping w = f(z)

Example: quadratic map $z \mapsto w = f(z) = z^2 = x^2 - y^2 + 2ixy$ • Consider curves C_1 and C_2 $C_1 = \{z : y = x\} \longrightarrow \{w : u = 0\}$ $C_2 = \{z : x = 1\} \longrightarrow \{w : v^2 + 4(u - 1) = 0\}$

$$\nu^{\dagger} = \nu = \pi / 4$$

$$z_0 = 1 + i \; ; f'(z_0) = 2z_0 \neq 0 \; \Rightarrow \; \text{conformal}$$
$$\psi_0 = \arg(2z_0) = \arg(2+2i) = \pi/4 \quad \text{rotation angle}$$
$$|f'(z_0)| = |2(1+i)| = 2\sqrt{2} \quad \text{magnification factor}$$

• z = 0 critical point: $f'(0) = 0, f''(0) \neq 0 \Rightarrow$ angles are doubled at z = 0

Example: Moebius map

$$z \mapsto w = f(z) = \frac{az+b}{cz+d}$$
, $ad-bc \neq 0$

$$f'(z) = \frac{ad - bc}{(cz + d)^2} \neq 0 \Rightarrow \text{ conformal}$$

♣ 3 independent parameters (may set e.g. ad - bc = 1)
⇒ any three distinct points z₁, z₂, z₃ may be mapped into three distinct points w₁, w₂, w₃
by a Moebius map (one possibly at ∞)
♣ obtained from combining rotation (ze^{iα}), dilation (αz), translation (z + b), inversion (1/z)

 \Rightarrow maps circles and lines into circles and lines

Ex.:
$$z \mapsto w = \frac{i-z}{i+z}$$

maps axis Imz = 0 on to circle |w| = 1; half plane Imz > 0 on to disk |w| < 1; Imz < 0 on to |w| > 1

TRANSFORMATION OF HARMONIC FUNCTIONS BY CONFORMAL MAPPING

H(x, y) harmonic : $\Delta H(x, y) = 0$.

• Apply mapping $f: z \mapsto w = u + iv$ f holomorphic, $f' \neq 0 \longrightarrow z = f^{-1}(w)$

• Then
$$H(x, y) \longrightarrow (\underbrace{H \circ f^{-1}}_{H'})(u, v)$$

Is H' harmonic?

Yes, because
$$\frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} = |f'(z)|^2 \left(\frac{\partial^2 H'}{\partial u^2} + \frac{\partial^2 H'}{\partial v^2}\right) \leftarrow \text{[Verify]}$$

So $f' \neq 0 \implies \Delta H = 0$ iff $\Delta H' = 0$

SUMMARY

Complex differentiation

 \triangleright holomorphic functions = differentiable in an open set

 \triangleright Cauchy-Riemann equations: $\overline{\partial}f = 0$ $(\overline{\partial} \equiv \partial/\partial\overline{z})$

 $\vartriangleright~f=u+iv$ holomorphic $\Rightarrow~u$, v harmonic: $\Delta u=0$, $~\Delta v=0$

 $\triangleright f$ holomorphic, $f' \neq 0 \Rightarrow$ mapping $z \mapsto w = f(z)$ is conformal