Functions of a complex variable (S1) Lecture 3

CAUCHY-RIEMANN EQUATIONS

$f=u+i v$ holomorphic $\Leftrightarrow u, v$ contin. differentiable and

$$
\begin{aligned}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \\
\text { i.e. } \quad \bar{\partial} f=0 \quad[\bar{\partial} \equiv \partial / \partial \bar{z}=(\partial / \partial x+i \partial / \partial y) / 2]
\end{aligned}
$$

- f holomorphic $\Rightarrow f$ continuous
- f, g holomorphic $\Rightarrow c_{1} f+c_{2} g, f g, f \circ g$ holomorphic
- For holomorphic f, f real-valued $\Rightarrow f$ constant
- For holomorphic $f,|f|$ constant $\Rightarrow f$ constant

Harmonic functions

$$
\begin{aligned}
& f=u+i v \text { holomorphic } \\
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

\triangleright Take derivative of 1st equation wrt \times, derivative of 2nd equation wrt y, and subtract:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} v}{\partial x \partial y}-\frac{\partial^{2} v}{\partial y \partial x}=0
$$

\triangleright Similarly:

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0
$$

Thus: $\quad f=u+i v$ holomorphic $\Rightarrow u, v$ harmonic:

$$
\Delta u=0, \quad \Delta v=0
$$

\& A converse applies in the sense that given a harmonic function u, I can use Cauchy-Riemann to find another harmonic function v such that $u+i v$ is holomorphic.
harmonic conjugate

Example

Given $u(x, y)=x y$

$$
\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=y \Rightarrow v(x, y)=\frac{y^{2}}{2}+c(x)
$$

$$
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=-x \Rightarrow v(x, y)=\frac{y^{2}}{2}-\frac{x^{2}}{2}+\text { const. harmonic conjugate }
$$

$\Rightarrow f(z)=u+i v=x y+i\left(\frac{y^{2}}{2}-\frac{x^{2}}{2}+\right.$ const. $)=-\frac{i}{2} z^{2}+$ const. holomorphic

CONFORMAL MAPPING

- For every point z where f is holomorphic and $f^{\prime} \neq 0$, the mapping $z \mapsto w=f(z)$ is conformal, i.e., it preserves angles.
$\diamond A$ particular case of this:

CONFORMALITY $=$ CONSERVATION OF ANGLES

\diamond If C_{1} and C_{2} are two curves in the z plane intersecting at z_{0} with angle ν, f holomorphic with $f^{\prime} \neq 0 \Rightarrow$ the images through f, C_{1}^{\prime} and C_{2}^{\prime}, of the curves C_{1} and C_{2} intersect with angle

$$
\nu^{\prime}=\nu
$$

Proof

Let z be generic point on $C_{1} ; w$ its image on C_{1}^{\prime}.

- Set $z-z_{0}=r e^{i \theta}, \quad w-w_{0}=r^{\prime} e^{i \theta^{\prime}} \quad, \quad f^{\prime}\left(z_{0}\right)=\left|f^{\prime}\left(z_{0}\right)\right| e^{i \psi_{0}}$,

$$
\text { and consider } \frac{w-w_{0}}{z-z_{0}}=\frac{r^{\prime}}{r} e^{i\left(\theta^{\prime}-\theta\right)}
$$

- For $z \rightarrow z_{0}$ along $C_{1}, \quad \theta \rightarrow \alpha_{1}, \quad \theta^{\prime} \rightarrow \beta_{1} \Rightarrow \psi_{0}=\beta_{1}-\alpha_{1}$.

By the same reasoning for $z \rightarrow z_{0}$ along $C_{2}, \psi_{0}=\beta_{2}-\alpha_{2}$.

$$
\begin{array}{r}
\text { Hence } \beta_{1}-\alpha_{1}=\beta_{2}-\alpha_{2} . \\
\Rightarrow \nu=\alpha_{2}-\alpha_{1}=\beta_{2}-\beta_{1}=\nu^{\prime}
\end{array}
$$

$$
f: z \mapsto w=f(z) \text { holomorphic with } f^{\prime}\left(z_{0}\right) \neq 0 \text { : }
$$

© Tangent vectors $d z$ to each curve at z_{0} are transformed into vectors $d w$ at $w_{0}=f\left(z_{0}\right)$ which are

- magnified by factor $\left|f^{\prime}\left(z_{0}\right)\right|$
- rotated through angle $\psi_{0}=\arg f^{\prime}\left(z_{0}\right)$
\Rightarrow angles between curves remain the same (conformal mapping)

Behaviour at critical points $f^{\prime}\left(z_{0}\right)=0$:

- $f\left(z_{0}\right)=w_{0} ; f^{\prime}\left(z_{0}\right)=\ldots=f^{(m-1)}\left(z_{0}\right)=0, \quad f^{(m)}\left(z_{0}\right) \neq 0$
\Rightarrow angle between any two curves at z_{0} is multiplied by m
under mapping $w=f(z)$

Example: quadratic map

$z \mapsto w=f(z)=z^{2}=x^{2}-y^{2}+2 i x y$

- Consider curves C_{1} and C_{2}

$$
\begin{aligned}
& C_{1}=\{z: y=x\} \longrightarrow\{w: u=0\} \\
C_{2}= & \{z: x=1\} \longrightarrow\left\{w: v^{2}+4(u-1)=0\right\}
\end{aligned}
$$

$$
v^{\prime}=v=\pi / 4
$$

$$
z_{0}=1+i ; f^{\prime}\left(z_{0}\right)=2 z_{0} \neq 0 \Rightarrow \text { conformal }
$$

$$
\psi_{0}=\arg \left(2 z_{0}\right)=\arg (2+2 i)=\pi / 4 \quad \text { rotation angle }
$$

$$
\left|f^{\prime}\left(z_{0}\right)\right|=|2(1+i)|=2 \sqrt{2} \quad \text { magnification factor }
$$

- $z=0$ critical point: $f^{\prime}(0)=0, f^{\prime \prime}(0) \neq 0 \Rightarrow$ angles are doubled at $z=0$

Example: Moebius map

$$
\begin{gathered}
z \mapsto w=f(z)=\frac{a z+b}{c z+d} \quad, \quad a d-b c \neq 0 \\
f^{\prime}(z)=\frac{a d-b c}{(c z+d)^{2}} \neq 0 \Rightarrow \quad \text { conformal }
\end{gathered}
$$

\& 3 independent parameters (may set e.g. $a d-b c=1$)
\Rightarrow any three distinct points z_{1}, z_{2}, z_{3} may be mapped
into three distinct points w_{1}, w_{2}, w_{3}
by a Moebius map (one possibly at ∞)
\& obtained from combining rotation $\left(z e^{i \alpha}\right)$, dilation (αz), translation $(z+b)$, inversion $(1 / z)$
\Rightarrow maps circles and lines into circles and lines

$$
\text { Ex. : } \quad z \mapsto w=\frac{i-z}{i+z}
$$

maps axis $\operatorname{Im} z=0$ on to circle $|w|=1$; half plane $\operatorname{Im} z>0$ on to disk $|w|<1$;

$$
\operatorname{Im} z<0 \text { on to }|w|>1
$$

TRANSFORMATION OF HARMONIC FUNCTIONS BY CONFORMAL MAPPING

$$
H(x, y) \text { harmonic : } \quad \Delta H(x, y)=0 .
$$

- Apply mapping $f: z \mapsto w=u+i v$
f holomorphic, $f^{\prime} \neq 0 \longrightarrow z=f^{-1}(w)$
- Then $H(x, y) \longrightarrow(\underbrace{H \circ f^{-1}}_{H^{\prime}})(u, v)$

Is H^{\prime} harmonic?
Yes, because $\frac{\partial^{2} H}{\partial x^{2}}+\frac{\partial^{2} H}{\partial y^{2}}=\left|f^{\prime}(z)\right|^{2}\left(\frac{\partial^{2} H^{\prime}}{\partial u^{2}}+\frac{\partial^{2} H^{\prime}}{\partial v^{2}}\right) \leftarrow$ [Verify]
So $f^{\prime} \neq 0 \Longrightarrow \Delta H=0$ iff $\Delta H^{\prime}=0$

SUMMARY

Complex differentiation

\triangleright holomorphic functions $=$ differentiable in an open set
\triangleright Cauchy-Riemann equations: $\bar{\partial} f=0 \quad(\bar{\partial} \equiv \partial / \partial \bar{z})$
$\triangleright f=u+i v$ holomorphic $\Rightarrow u, v$ harmonic: $\Delta u=0, \Delta v=0$
$\triangleright f$ holomorphic, $f^{\prime} \neq 0 \Rightarrow$ mapping $z \mapsto w=f(z)$ is conformal

