II. COMPLEX DIFFERENTIATION

$$
\begin{gathered}
f: S \rightarrow \mathbb{C} \\
z=x+i y ; f(z)=u(x, y)+i v(x, y)
\end{gathered}
$$

- complex differentiability is a far stronger condition than the condition that u and v be differentiable as functions of real variables x and y

OUTLINE

\diamond Differentiability in complex sense
\diamond Cauchy-Riemann equations
\diamond Holomorphic functions

$$
f: S \rightarrow \mathbb{C}
$$

$\triangleright f$ continuous at $z_{0} \in S$ if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

$\triangleright f$ differentiable at z_{0} if

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} & =\lim _{z \rightarrow z_{0}} \frac{\Delta f}{\Delta z} \quad \text { exists } \\
=f^{\prime}\left(z_{0}\right) & \equiv \frac{d f}{d z}\left(z_{0}\right)
\end{aligned}
$$

$\triangleright f \underline{\text { holomorphic }}$ at z_{0} if there exists $\delta>0$ such that f differentiable whenever $\left|z-z_{0}\right|<\delta$

- holomorphic $=$ differentiable in an open set

Examples: Re z continuous but not differentiable; z^{2} holomorphic; $|z|^{2}$ differentiable at $z=0$ but not holomorphic

CAUCHY-RIEMANN EQUATIONS

$f=u+i v$ is holomorphic on open set $D \subset \mathbb{C}$ if and only if u, v are continuously differentiable and

$$
\begin{array}{r}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \tag{CReqs.}\\
\text { Prove } \Rightarrow
\end{array}
$$

- Take first $\Delta z=\Delta x$.

$$
\begin{aligned}
& \frac{f(z+\Delta z)-f(z)}{\Delta z}= \frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+i \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x} \\
& \Delta x \rightarrow 0 \Rightarrow f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}
\end{aligned}
$$

- Take next $\Delta z=i \Delta y$. Similarly, you get

$$
\Delta y \rightarrow 0 \Rightarrow f^{\prime}(z)=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

holomorphy \Rightarrow limits must be equal: $\partial u / \partial x=\partial v / \partial y, \partial v / \partial x=-\partial u / \partial y$

Prove \Leftarrow.

- u and v continuously differentiable \Rightarrow

$$
\begin{aligned}
u(x+\Delta x, y+\Delta y)-u(x, y) & =\frac{\partial u}{\partial x} \Delta x+\frac{\partial u}{\partial y} \Delta y+\eta \Delta x+\eta^{\prime} \Delta y \\
v(x+\Delta x, y+\Delta y)-v(x, y) & =\frac{\partial v}{\partial x} \Delta x+\frac{\partial v}{\partial y} \Delta y+\eta_{1} \Delta x+\eta_{1}^{\prime} \Delta y
\end{aligned}
$$

where $\eta, \eta_{1} \rightarrow 0$ as $\Delta x \rightarrow 0$ and $\eta^{\prime}, \eta_{1}^{\prime} \rightarrow 0$ as $\Delta y \rightarrow 0$. Then

$$
f(z+\Delta z)-f(z)=\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \Delta x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \Delta y+\left(\eta+i \eta_{1}\right) \Delta x+\left(\eta^{\prime}+i \eta_{1}^{\prime}\right) \Delta y
$$

- Using the Cauchy-Riemann equations gives

$$
f(z+\Delta z)-f(z)=\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)(\Delta x+i \Delta y)+\left(\eta+i \eta_{1}\right) \Delta x+\left(\eta^{\prime}+i \eta_{1}^{\prime}\right) \Delta y
$$

- Dividing through by Δz and taking the limit $\Delta z \rightarrow 0$

$$
\Rightarrow f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}
$$

EXPRESSING CAUCHY-RIEMANN EQUATIONS IN TERMS OF $\partial / \partial z, \partial / \partial \bar{z}$

$$
f=u+i v
$$

© Using $\partial \equiv \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \bar{\partial} \equiv \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$,
Cauchy-Riemann equations can be recast in compact form as

$$
\bar{\partial} f=0
$$

because $\bar{\partial} f=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(u+i v)=\frac{1}{2} \underbrace{\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)}_{=0 \text { by } \mathrm{CR}}+\frac{i}{2} \underbrace{\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)}_{=0 \text { by } \mathrm{CR}}=0$.
© The complex derivative is given by

$$
f^{\prime}(z)=\partial f
$$

because $\partial f=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)(u+i v)=\frac{1}{2} \underbrace{\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)}_{=2(\partial u / \partial x) \text { by CR }}+\frac{i}{2} \underbrace{\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)}_{=2(\partial v / \partial x) \text { by CR }}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$.

- Example. $\cos z=\cos (x+i y)$ is holomorphic on the entire \mathbb{C}, while $\cos \bar{z}=\cos (x-i y)$ is nowhere holomorphic.

Note

Holomorphic functions are independent of \bar{z} : functions of z alone.
They are true functions of a complex variable, not just complex functions of two real variables.

GEOMETRIC INTERPRETATION OF CAUCHY-RIEMANN EQUATIONS

$$
f(z)=u(x, y)+i v(x, y)
$$

f holomorphic \Rightarrow

$$
\Rightarrow \nabla u \cdot \nabla v=\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}=0 \quad \text { by } \quad \mathrm{CR}
$$

$$
\mathrm{u}=\text { const. }
$$

© Cauchy-Riemann \Rightarrow level curves $u(x, y)=$ const. and $v(x, y)=$ const. form orthogonal families of curves

- We will interpret this in the next lecture as a particular case of a general property of holomorphic f : conformality.

SINGULAR POINTS

$$
z=a \text { is singular point of } f \text { if } f \text { is not holomorphic in } a \text {. }
$$

The singular point $z=a$ is

- isolated if there exists a neighbourhood of a with no other singular points.
- a pole if $1 / f$ is holomorphic in a neighbourhood of a and a is a zero of $1 / f$.
- an essential singularity if neither f nor $1 / f$ are bounded in a neighbourhood of a.

Examples

$$
\begin{gathered}
f(z)=1 / z \text { has a pole at } z=0 ; \\
f(z)=e^{1 / z} \text { has an essential singularity at } z=0 ; \\
\text { both cases above are isolated singular points. } \\
f(z)=1 / \sin (1 / z) \text { has a non-isolated singularity at } z=0, \\
\text { poles at } z=1 / n \pi, n= \pm 1, \pm 2, \ldots
\end{gathered}
$$

entire $f=$ holomorphic in the whole finite complex plane $\underline{\text { meromorphic }} f=$ holomorphic in an open set except possibly for poles

Behaviour at $z=\infty$

The behaviour of $f(z)$ at $z=\infty$ is by definition the behaviour of

$$
g(\zeta) \equiv f(1 / \zeta) \text { at } \zeta=0
$$

Example: $f(z)=z^{2}$ has a pole at $z=\infty$ (because $g(\zeta)=1 / \zeta^{2}$ has a pole at $\zeta=0$)

$$
\begin{aligned}
& f(z)=e^{1 / z} \text { is holomorphic at } z=\infty \\
& f(z)=1 / \sin (1 / z) \text { has a pole at } z=\infty
\end{aligned}
$$

