Functions of a complex variable (S1)

Trinity Term 2012
Lecturer: F Hautmann

- Why complex variables?
\triangleright calculational techniques
to compute integrals, solve equations, make series expansions, ...
\triangleright functions that are "nice and smooth" derive their properties from behaviour in the complex plane

Lecture times: Wed, Thu, Fri at 12:00 in the Martin Wood Lecture Theatre

- Weekly problem sheets posted on lecture webpage: http:// www-thphys.physics.ox.ac.uk/people/FrancescoHautmann/ComplexVariable/

References

- Mathematical methods textbooks containing useful presentations of complex variable:
[1] P. Dennery and A. Krzywicki: Mathematics for Physicists, Dover
[2] M. Boas: Mathematical Methods in the Physical Sciences
- Textbooks on complex variables with emphasis on applications:
[3] R. Churchill, Complex variables and applications, McGraw-Hill
[4] G. Carrier, M. Krook and C. Pearson, Functions of a complex variable
- Classic reference books on complex analysis:
[5] L. Ahlfors: Complex analysis
[6] W. Rudin: Real and complex analysis
- Further references:
H. Priestley: Introduction to complex analysis, Oxford University Press
M. Ablowitz and A. Fokas: Complex variables: introduction and applications
Y. Kwok: Applied complex variables, Cambridge University Press
- A good source for worked problems and examples:
M. Spiegel: Complex variables, Schaum's Outline Series, McGraw-Hill
- Lecture notes by J. Binney on Complex Variable:
http://www-thphys.physics.ox.ac.uk/people/JamesBinney/advcalc.pdf

Synopsis

I The complex plane
II Complex differentiation
III Multi-valued functions
IV Complex integration
V Power series expansions
VI Residue calculus
VII Conformal mapping
VIII Integral transforms

LECTURE 1: OUTLINE

Introduction to complex variables
1.1 The complex plane

- Algebra of complex numbers
- "Extended" complex plane
1.2 Functions on \mathbb{C}
- Elementary complex functions
- Functions as "mappings"
1.3 Point sets in the complex plane
- open, closed sets
- compact
- connected

1.1 The complex plane

$\diamond \mathbb{C}=$ set of complex nos with,$+ \times$ operations

$$
\begin{aligned}
& z=a+i b, \quad i^{2}=-1 \\
& a=\operatorname{Re} z, \quad b=\operatorname{Im} z
\end{aligned}
$$

EXTENDED COMPLEX PLANE

- 1-to-1 correspondence between \mathbb{C} and S :

$$
\begin{array}{r}
\varphi: z=r e^{i \theta} \rightarrow\left(\frac{r \cos \theta}{1+r^{2}}, \frac{r \sin \theta}{1+r^{2}}, \frac{r^{2}}{1+r^{2}}\right) \\
\hookrightarrow \text { stereographic projection }
\end{array}
$$

- $z=\infty$ defined as the point associated to $(0,0,1)$ on S by φ projection
- extended complex plane is $\mathbb{C} \cup\{z=\infty\}$

1.2 Elementary functions on \mathbb{C}

- Complex polynomials and rational functions defined by algebraic operations in \mathbb{C}
- Complex exponential: $e^{z}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)$
\longrightarrow complex trigon. and hyperb. fctns in terms of exp.

$$
\text { e.g. } \cos z=\left(e^{i z}+e^{-i z}\right) / 2
$$

- Complex logarithm $\ln z: e^{\ln z}=z$
$\Rightarrow \ln z=\ln |z|+i(\theta+2 n \pi), n=0, \pm 1, \ldots \quad(\leftarrow$ multi-valued $)$
\longrightarrow complex powers: $z^{\alpha}=e^{\alpha \ln z}$ (α complex)

FUNCTIONS AS MAPPINGS

$$
\begin{gathered}
f: S \subset \mathbb{C} \rightarrow \mathbb{C} \\
f: z \in S \mapsto w=f(z)
\end{gathered}
$$

- For any subset A of S, image of A through $f=f(A)$ is the set of points w such that $w=f(z)$ for some z belonging to A.
- f maps A on to $f(A)$

Example

$w=f(z)=e^{z}$. Set $z=x+i y ; w=\rho e^{i \phi}$. Then $\rho=e^{x} ; \phi=y$.
lines $x=a \xrightarrow{f}$ circles $\rho=e^{a}$
lines $y=b \xrightarrow{f}$ rays $\phi=b$

1.3 Point sets in the complex plane

- $z_{0} \in S$ isolated point of S if there exists a neighbourhood of z_{0} which does not contain any other point belonging to S
- z_{0} limit point of S if every neighbourhood of z_{0} contains at least one element of S, other than z_{0} itself
- z_{0} interior point of S if there exists a neighbourhood of z_{0} all points of which belong to S
- z_{0} boundary point of S if every neighbourhood of z_{0} contains points of S and points not belonging to S
\triangleright Every limit point that is not interior is boundary point.

EXAMPLE. $S_{0}=\{z \in \mathbb{C}: 0<|z|<1\}$

- $z=0$ is boundary point; each point on circle $|z|=1$ is boundary point.
$\diamond A$ set is closed if it contains all its limit points.

$$
\text { Ex.: }\{z:|z| \leq 1\}
$$

$\diamond A$ set is open if all its points are interior points.

$$
\text { Ex.: }\{z:|z|<1\}
$$

EXAMPLE. $S_{1}=\{z=i / n: n \in \mathbb{N}\}$

- S_{1} neither open nor closed; $z=0$ limit point; all points in S_{1} are isolated.
$\diamond \mathrm{A}$ set S is bounded if for some constant $M,|z|<M$ for every $z \in S$.
- compact $=$ closed and bounded
\diamond A set $S \subset \mathbb{C}$ is connected if every two points in S can be joined by a path all points of which belong to S.

- connected open set $=$ domain (or region)

