Functions of a complex variable (S1) Trinity Term 2012 Lecturer: F Hautmann

• Why complex variables?

▷ calculational techniques to compute integrals, solve equations, make series expansions, ...

> functions that are "nice and smooth"
derive their properties from behaviour in the complex plane

Lecture times: Wed, Thu, Fri at 12:00 in the Martin Wood Lecture Theatre

• Weekly problem sheets posted on lecture webpage: http://www-thphys.physics.ox.ac.uk/people/FrancescoHautmann/ComplexVariable/

References

- Mathematical methods textbooks containing useful presentations of complex variable:
- [1] P. Dennery and A. Krzywicki: Mathematics for Physicists, Dover
- [2] M. Boas: Mathematical Methods in the Physical Sciences
 - Textbooks on complex variables with emphasis on applications:
- [3] R. Churchill, Complex variables and applications, McGraw-Hill
- [4] G. Carrier, M. Krook and C. Pearson, Functions of a complex variable
 - Classic reference books on complex analysis:
- [5] L. Ahlfors: Complex analysis
- [6] W. Rudin: Real and complex analysis

• Further references:

H. Priestley: Introduction to complex analysis, Oxford University PressM. Ablowitz and A. Fokas: Complex variables: introduction and applicationsY. Kwok: Applied complex variables, Cambridge University Press

• A good source for worked problems and examples:

M. Spiegel: Complex variables, Schaum's Outline Series, McGraw-Hill

• Lecture notes by J. Binney on Complex Variable:

http://www-thphys.physics.ox.ac.uk/people/JamesBinney/advcalc.pdf

Synopsis

- I The complex plane
- II Complex differentiation
- III Multi-valued functions
- IV Complex integration
- V Power series expansions
- VI Residue calculus
- VII Conformal mapping
- VIII Integral transforms

LECTURE 1: OUTLINE

Introduction to complex variables

- 1.1 The complex plane
- Algebra of complex numbers
 - "Extended" complex plane
 - $\mathbf{1.2}$ Functions on $\mathbb C$
- Elementary complex functions
 - Functions as "mappings"
- 1.3 Point sets in the complex plane
 - open, closed sets
 - compact
 - connected

1.1 The complex plane

EXTENDED COMPLEX PLANE

• 1-to-1 correspondence between $\mathbb C$ and S:

$$\varphi: z = re^{i\theta} \to \left(\frac{r\cos\theta}{1+r^2}, \frac{r\sin\theta}{1+r^2}, \frac{r^2}{1+r^2}\right)$$

 \hookrightarrow stereographic projection

• $z=\infty$ defined as the point associated to (0,0,1) on S by φ projection

• extended complex plane is $\mathbb{C} \cup \{z = \infty\}$

1.2 Elementary functions on $\mathbb C$

 \bullet Complex polynomials and rational functions defined by algebraic operations in $\mathbb C$

• Complex exponential: $e^z = e^x e^{iy} = e^x (\cos y + i \sin y)$

 \longrightarrow complex trigon. and hyperb. fctns in terms of exp. e.g. $\cos z = (e^{iz} + e^{-iz})/2$

• Complex logarithm $\ln z$: $e^{\ln z} = z$ $\Rightarrow \ln z = \ln |z| + i(\theta + 2n\pi)$, $n = 0, \pm 1, \dots$ (\leftarrow <u>multi-valued</u>)

 \longrightarrow complex powers: $z^{\alpha} = e^{\alpha \ln z}$ (α complex)

FUNCTIONS AS MAPPINGS

 $f: S \subset \mathbb{C} \to \mathbb{C}$ $f: z \in S \mapsto w = f(z)$

• For any subset A of S, image of A through f = f(A) is the set of points w such that w = f(z) for some z belonging to A.

• f maps A on to f(A)

Example

 $w = f(z) = e^z$. Set z = x + iy; $w = \rho e^{i\phi}$. Then $\rho = e^x$; $\phi = y$.

$S \subset \mathbb{C}.$

- $z_0 \in S$ isolated point of S if there exists a neighbourhood of z_0 which does not contain any other point belonging to S
- z_0 limit point of S if every neighbourhood of z_0 contains at least one element of S, other than z_0 itself
- z_0 interior point of S if there exists a neighbourhood of z_0 all points of which belong to S
- z_0 boundary point of S if every neighbourhood of z_0 contains points of S and points not belonging to S
 - ▷ Every limit point that is not interior is boundary point.

EXAMPLE.
$$S_0 = \{z \in \mathbb{C} : 0 < |z| < 1\}$$

• z = 0 is boundary point; each point on circle |z| = 1 is boundary point.

 \diamond A set is <u>closed</u> if it contains all its limit points. Ex.: $\{z : |z| \le 1\}$

 \diamond A set is <u>open</u> if all its points are interior points. Ex.: $\{z : |z| < 1\}$

EXAMPLE. $S_1 = \{z = i/n : n \in \mathbb{N}\}$

• S_1 neither open nor closed; z = 0 limit point; all points in S_1 are isolated.

 \diamond A set S is <u>bounded</u> if for some constant M, |z| < M for every $z \in S$.

• compact = closed and bounded

 \diamond A set $S \subset \mathbb{C}$ is <u>connected</u> if every two points in S can be joined by a path all points of which belong to S.

