
Functions of a Complex Variable (S1)
Lecture 10

• The argument principle

⊲ Winding number

⊲ Counting zeros and poles

⊲ Rouché theorem

• Applications to

⊲ expansions in series of fractions

⊲ infinite product expansions



The argument principle

C

Re z

Im z

♠ Let f be meromorphic inside and on a closed contour C,

with no zeros or poles on C. Then

1

2πi

∮

C

f ′(z)

f(z)
dz = N − P =

1

2π
∆C argf(z)

where N = number of zeros of f inside C,

P = number of poles of f inside C,

counted according to their multiplicity,
∆C argf(z) = change in the argument of f over C.



Part (a)

zk = pole of order nk =⇒
f ′(z)

f(z)
= −

1

z − zk
nk + φ(z)

︸︷︷︸

analytic

for z near zk

zk = zero of order nk =⇒
f ′(z)

f(z)
=

1

z − zk
nk + φ(z)

︸︷︷︸

analytic

for z near zk

Residue theorem =⇒
1

2πi

∮

C

f ′(z)

f(z)
dz =

Nz∑

jz=1

njz −

Np∑

jp=1

njp = N − P



Part (b)

Let C be parameterized as z = z(t) on a ≤ t ≤ b, with

z(a) = z(b). Then

1

2πi

∮

C

f ′(z)

f(z)
dz =

1

2πi

∫ b

a

f ′(z(t))

f(z(t))
z′(t) dt

=
1

2πi
ln [f(z(t))]

|b
|a

=
1

2πi
ln [|f(z(t))|]

|b
|a

︸ ︷︷ ︸

= 0

+
1

2πi
i [argf(z(t))]

|b
|a

=
1

2π
∆C argf(z)



Winding number

Re z

Im z

f

Im w

z

C

w

Re w

w = f(z) = |f(z)|eiθ

∆C argw/(2π) gives the number of times the point w winds around the

origin in the image curve C ′ when z moves around C
⇒ “winding number” of C ′ about the origin

1

2πi

∮

C

f ′(z)

f(z)
dz =

1

2πi

∮

C′

dw

w
=

1

2π
∆C argw ≡ J



♣ The argument principle establishes a striking relationship

between number of zeros − number of poles of f in a domain D

and how f maps the boundary ∂D of the domain,

namely, the number of times the image of ∂D through f

winds around the origin.

N − P = J



EXAMPLES

(a) f(z) = z2 − 1 ; C : |z − 1| = 1

w = f(z) = |z|2e2iθ − 1

=⇒ ∆C argw = 2π , i.e. , J = 1 =⇒ N − P = 1

Indeed f has 1 zero (at z = 1) and no poles inside C.

(b) f(z) =
z

(z + 1)2
; C : |z| = 10

w = f(z) =
|z|eiθ

(|z|eiθ + 1)2
≈

1

|z|
e−iθ

=⇒ ∆C argw = −2π , i.e. , J = −1 =⇒ N − P = −1

Indeed f has 1 zero (at z = 0) and 1 double pole (at z = −1) inside C.



EXAMPLE

• How many solutions does the equation ez − 2z = 0 have
inside the circle |z| = 3?

Re wRe z

Im wIm z

w=f(z)

z
f (z) = e  − 2 z 

⊲ image of the circle winds around the origin twice

⊲ there are no poles

⇒ two solutions



A COROLLARY OF THE ARGUMENT PRINCIPLE: ROUCHÉ THEOREM

♠ Let F (z) and G(z) be holomorphic on and inside a closed contour C.

If |F (z)| > |G(z)− F (z)| on C,
then F (z) and G(z) have the same number of zeros inside C.

Let w =
G

F
; consider

1

2πi

∮

C

w′(z)

w(z)
dz .

|w(z)− 1| =
|G− F |

|F |
< 1 on C .

Therefore the image of C lies inside |w − 1| < 1

=⇒ ∆C argw = 0 =⇒ N = P for w(z) .

Thus the number of zeros of F (P ) equals the number of zeros of G (N).



Rouché theorem may be used to

• locate solutions of equations in the complex plane

• arrive at results such as the fundamental theorem of algebra

(alternative proof to that based on Liouville theorem)

and maximum modulus principle.



EXAMPLE

♦ Show that the polynomial P (z) = z5 + 14z + 2 has 4 roots
in the annulus 3/2 < |z| < 2.

Im z

Re z

•Consider C2 circle |z| = 2 . Take G = P (z) , F (z) = z5 .

|G− F | < |F | on C2 =⇒ P (z) has as many zeros inside C2 as F (z), which is 5.

•Next consider C1 circle |z| = 3/2 . Take G = P (z) , F (z) = 14z .

|G− F | < |F | on C1 =⇒ P (z) has as many zeros inside C1 as F (z), which is 1.

Thus 5− 1 = 4 zeros of P (z) lie between C2 and C1.



AN EXTENDED VERSION OF THE ARGUMENT PRINCIPLE

♦ If f and C satisfy the same hypotheses of the argument principle and
h(z) is holomorphic inside and on C, then

1

2πi

∮

C

f ′(z)

f(z)
h(z) dz =

Nz∑

jz=1

njzh(zjz)−

Np∑

jp=1

njph(zjp)



EXPANSIONS BASED ON POLES OF A FUNCTION

• Taylor and Laurent series provide power series expansions of a function f .

• Other kinds of expansions can be useful based on poles of f :

zn , n = 1, . . . ,∞ poles of function f(z)

i) f(z) =
∑

n∈poles

gn(z, n)

ii) f(z) =
∏

n∈poles

gn(z, n)

⊲ The (extended) argument principle may be used to obtain such expansions.



APPLICATION TO EXPANSION IN SERIES OF FRACTIONS

=
π cot π  z

ΓN

2zα 22 π i
 dz1

Re z

Im z

N

N+1/2−N−1/2

ΓI ( α ) =

• Use extended argument principle with f(z) = sinπz, h(z) = 1/(α2 − z2),

and zk = k (k ∈ Z) with nk = 1.

So I(α) =
N∑

n=−N

1

α2 − n2
.

• Now note that for N → ∞ the integral on the square → 0, and

compute the integrals on the circles from the residues at ±α.

=⇒
π cot πα

α
=

∞∑

n=−∞

1

α2 − n2



=⇒ π cot πz = z

∞
∑

n=−∞

1

z2 − n2
=

1

z
+ 2z

∞
∑

n=1

1

z2 − n2
=

1

z
+

2z

z2 − 1
+

2z

z2 − 4
+ . . .

• expansion of π cot πz in a series of fractions

based on the poles of the function

♦ Expansion of function f , having poles zj , 0 < |z1| ≤ . . . ≤ |zj | ≤ . . ., with residues rj :

f(z) = f(0) +
∑

j

rj

(

1

z − zj
+

1

zj

)

• For f(z) = cot z − 1/z this gives

cot z =
1

z
+

∑

n=±1,±2,...

(

1

z − nπ
+

1

nπ

)

i.e., the expansion at the top:

cot z =
1

z
+

∞
∑

n=1

(

1

z − nπ
+

1

z + nπ

)

=
1

z
+ 2z

∞
∑

n=1

1

z2 − n2π2



AN EXAMPLE OF INFINITE PRODUCT EXPANSION

d

dz
ln sinπz = π cot πz =

1

z
+ 2z

∞∑

n=1

1

z2 − n2

=⇒ ln sinπz = ln z + c0 +
∞∑

n=1

[
ln(z2 − n2) + cn

]

with c0 = lnπ , cn = − ln(−n2)

=⇒ sinπz = πz
∞∏

n=1

(

1−
z2

n2

)

⊲ infinite-product expansion of the function sinπz


