Functions of a Complex Variable (S1)
Lecture 10

e [he argument principle

> Winding number
> Counting zeros and poles
> Rouché theorem

e Applications to

> expansions in series of fractions
> infinite product expansions



The argument principle
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& Let f be meromorphic inside and on a closed contour C,

with no zeros or poles on C. Then

L[ flz) 1
el e dz=N—P = Ac argf(z)

where N = number of zeros of f inside C,
P = number of poles of f inside C,

counted according to their multiplicity,
Ac¢ argf(z) = change in the argument of f over C.



/
1
2, = pole of order n, — /(2) = — ni + ¢(z) for z near z
f(Z) & Rk S~~~
analytic
/
1
21 = zero of order ny = f(z) — ng + ¢(z) for z near z
f(z)  z—2z "~
analytic
f N,
(2)
Residue theorem =— 2—m ) Z n;, — Z nj, =N —P

Jjz=1 Jp=1



Part (b)

Let C' be parameterized as z = z(t) on a <t < b, with
z(a) = z(b). Then
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Winding number
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A¢ argw/(27) gives the number of times the point w winds around the

origin in the image curve C” when z moves around C
= “winding number” of C" about the origin
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& The argument principle establishes a striking relationship
between number of zeros — number of poles of f in a domain D
and how f maps the boundary 9D of the domain,
namely, the number of times the image of 0D through f

winds around the origin.



EXAMPLES

(a) f(z) =2*—1 ; C:lz—1]=1

w = f(z) = |2|?e*? — 1
— Agargw=2m,1e., J=1 = N—-P=1

Indeed f has 1 zero (at z = 1) and no poles inside C.

(b) f(z) = - Oz =10

|Z|€w - L

w = Z) = ; ~ —€
f= e 12~ 12
— Ag argw = 2w, te., J=—-1 = N-P=-1
Indeed f has 1 zero (at z = 0) and 1 double pole (at z = —1) inside C.




EXAMPLE

e How many solutions does the equation ¢ — 2z = 0 have
inside the circle |z| = 37

f(z)=€-22
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> image of the circle winds around the origin twice
> there are no poles

= two solutions



A COROLLARY OF THE ARGUMENT PRINCIPLE: ROUCHE THEOREM

& Let F(z) and G(z) be holomorphic on and inside a closed contour C.
If |F(2) > |G(2) — F(2)] on C,

then F'(z) and GG(z) have the same number of zeros inside C'.
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Let w = T consider — w'(2)
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Therefore the image of C' lies inside |w — 1] < 1

lw(z) — 1] = <1 on C .

— Acargw =0 = N =P for w(z).

Thus the number of zeros of F' (P) equals the number of zeros of G (V).



Rouché theorem may be used to
e |ocate solutions of equations in the complex plane
e arrive at results such as the fundamental theorem of algebra
(alternative proof to that based on Liouville theorem)

and maximum modulus principle.



EXAMPLE

{ Show that the polynomial P(z) = z° + 14z + 2 has 4 roots
in the annulus 3/2 < |z| < 2.
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e Consider O circle |z| =2 . Take G = P(z) , F(z2)=2" .

|G — F| < |F|on (Cy = P(z) has as many zeros inside Cy as F'(z), which is 5.

e Next consider (' circle |z| =3/2 . Take G = P(z) , F(z) =14z .

|G — F| < |F|on (Cy = P(z) has as many zeros inside Cy as F(z), which is 1.
Thus 5 —1=4 zeros of P(z) lie between C5 and C}.



AN EXTENDED VERSION OF THE ARGUMENT PRINCIPLE

O If f and C' satisfy the same hypotheses of the argument principle and
h(z) is holomorphic inside and on C, then
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EXPANSIONS BASED ON POLES OF A FUNCTION

e Taylor and Laurent series provide power series expansions of a function f.

e Other kinds of expansions can be useful based on poles of f:

Zn, m=1,...,00 poles of function f(z)

) )= Y galzn)

ne&poles

i) 1= [I onlem)

ne&poles

> The (extended) argument principle may be used to obtain such expansions.



APPLICATION TO EXPANSION IN SERIES OF FRACTIONS

(o) = Im z
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o Use extended argument principle with f(z) = sinmz, h(z) = 1/(a® — 2?),

and zp =k (k € Z) with ni = 1.
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e Now note that for N — oo the integral on the square — 0, and
compute the integrals on the circles from the residues at +a.
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e expansion of m cot wz in a series of fractions

based on the poles of the function

{ Expansion of function f, having poles z;, 0 < |z1]| < ... <|z;] < ..., with residues r;:

1 1
Fz) = FO0)+ > _m (z — 2-)
e For f(z) = cot z — 1/z this gives
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t z = — g
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i.e., the expansion at the top:




AN EXAMPLE OF INFINITE PRODUCT EXPANSION

d 1 >
— Insinwz =7 cot mz = — +2ZZ

dz Z -

22 —n
n=1

— Insinmz =Inz + ¢y + Z [ln(;ﬂ —n?) + cn]

n=1

with co =Inm , ¢, = —In(—n?)

—> SIN7wZz = 7% H (1——2)
n

n=1

> infinite-product expansion of the function sin 7z



