Functions of a Complex Variable (S1)
 Lecture 10

- The argument principle
\triangleright Winding number
\triangleright Counting zeros and poles
\triangleright Rouché theorem
- Applications to
\triangleright expansions in series of fractions
\triangleright infinite product expansions

The argument principle

© Let f be meromorphic inside and on a closed contour C, with no zeros or poles on C. Then

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} d z=N-P=\frac{1}{2 \pi} \Delta_{C} \arg f(z)
$$

where $N=$ number of zeros of f inside C,
$P=$ number of poles of f inside C,
counted according to their multiplicity,
$\Delta_{C} \arg f(z)=$ change in the argument of f over C.

Part (a)

$z_{k}=$ pole of order $n_{k} \Longrightarrow \frac{f^{\prime}(z)}{f(z)}=-\frac{1}{z-z_{k}} n_{k}+\underbrace{\phi(z)}_{\text {analytic }}$ for z near z_{k}

$$
z_{k}=\text { zero of order } n_{k} \Longrightarrow \frac{f^{\prime}(z)}{f(z)}=\frac{1}{z-z_{k}} n_{k}+\underbrace{\phi(z)}_{\text {analytic }} \text { for } z \text { near } z_{k}
$$

Residue theorem $\Longrightarrow \frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j_{z}=1}^{N_{z}} n_{j_{z}}-\sum_{j_{p}=1}^{N_{p}} n_{j_{p}}=N-P$

Part (b)

Let C be parameterized as $z=z(t)$ on $a \leq t \leq b$, with

$$
\begin{gathered}
z(a)=z(b) \text {. Then } \\
\begin{aligned}
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} d z= & \frac{1}{2 \pi i} \int_{a}^{b} \frac{f^{\prime}(z(t))}{f(z(t))} z^{\prime}(t) d t \\
& =\frac{1}{2 \pi i} \ln [f(z(t))]_{\mid a}^{b} \\
= & \frac{1}{2 \pi i} \underbrace{\ln [|f(z(t))|]_{\mid a}^{b}}_{=0}+\frac{1}{2 \pi i} i[\arg f(z(t))]_{\mid a}^{b} \\
& =\frac{1}{2 \pi} \Delta_{C} \arg f(z)
\end{aligned}
\end{gathered}
$$

Winding number

$\Delta_{C} \arg w /(2 \pi)$ gives the number of times the point w winds around the origin in the image curve C^{\prime} when z moves around C \Rightarrow "winding number" of C^{\prime} about the origin

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} d z=\frac{1}{2 \pi i} \oint_{C^{\prime}} \frac{d w}{w}=\frac{1}{2 \pi} \Delta_{C} \arg w \equiv J
$$

\& The argument principle establishes a striking relationship between number of zeros - number of poles of f in a domain D and how f maps the boundary ∂D of the domain, namely, the number of times the image of ∂D through f winds around the origin.

$$
N-P=J
$$

EXAMPLES

$$
\begin{gathered}
\text { (a) } f(z)=z^{2}-1 \quad ; \quad C:|z-1|=1 \\
w=f(z)=|z|^{2} e^{2 i \theta}-1 \\
\Longrightarrow \Delta_{C} \arg w=2 \pi, \text { i.e., } J=1 \Longrightarrow N-P=1
\end{gathered}
$$

Indeed f has 1 zero (at $z=1$) and no poles inside C.

$$
\begin{gathered}
\text { (b) } f(z)=\frac{z}{(z+1)^{2}} ; \quad C:|z|=10 \\
w=f(z)=\frac{|z| e^{i \theta}}{\left(|z| e^{i \theta}+1\right)^{2}} \approx \frac{1}{|z|} e^{-i \theta} \\
\Longrightarrow \Delta_{C} \arg w=-2 \pi, \text { i.e., } J=-1 \Longrightarrow N-P=-1
\end{gathered}
$$

Indeed f has 1 zero (at $z=0$) and 1 double pole (at $z=-1$) inside C.

EXAMPLE

- How many solutions does the equation $e^{z}-2 z=0$ have inside the circle $|z|=3$?

$$
\mathrm{f}(\mathrm{z})=\mathrm{e}^{\mathrm{z}}-2 \mathrm{z}
$$

\triangleright image of the circle winds around the origin twice
\triangleright there are no poles

$$
\Rightarrow \text { two solutions }
$$

A COROLLARY OF THE ARGUMENT PRINCIPLE: ROUCHÉ THEOREM

^ Let $F(z)$ and $G(z)$ be holomorphic on and inside a closed contour C.

$$
\text { If }|F(z)|>|G(z)-F(z)| \text { on } C
$$

then $F(z)$ and $G(z)$ have the same number of zeros inside C.

$$
\begin{aligned}
& \text { Let } w=\frac{G}{F} ; \text { consider } \frac{1}{2 \pi i} \oint_{C} \frac{w^{\prime}(z)}{w(z)} d z . \\
& \qquad|w(z)-1|=\frac{|G-F|}{|F|}<1 \text { on } C .
\end{aligned}
$$

Therefore the image of C lies inside $|w-1|<1$

$$
\Longrightarrow \Delta_{C} \arg w=0 \Longrightarrow N=P \text { for } w(z) .
$$

Thus the number of zeros of $F(P)$ equals the number of zeros of $G(N)$.

Rouché theorem may be used to

- locate solutions of equations in the complex plane
- arrive at results such as the fundamental theorem of algebra (alternative proof to that based on Liouville theorem) and maximum modulus principle.

EXAMPLE

\diamond Show that the polynomial $P(z)=z^{5}+14 z+2$ has 4 roots in the annulus $3 / 2<|z|<2$.

- Consider C_{2} circle $|z|=2$. Take $G=P(z), F(z)=z^{5}$.
$|G-F|<|F|$ on $C_{2} \Longrightarrow P(z)$ has as many zeros inside C_{2} as $F(z)$, which is 5 .
- Next consider C_{1} circle $|z|=3 / 2$. Take $G=P(z), F(z)=14 z$.
$|G-F|<|F|$ on $C_{1} \Longrightarrow P(z)$ has as many zeros inside C_{1} as $F(z)$, which is 1 . Thus 5-1 = 4 zeros of $P(z)$ lie between C_{2} and C_{1}.

an extended version of the argument principle

\diamond If f and C satisfy the same hypotheses of the argument principle and $h(z)$ is holomorphic inside and on C, then

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} h(z) d z=\sum_{j_{z}=1}^{N_{z}} n_{j_{z}} h\left(z_{j_{z}}\right)-\sum_{j_{p}=1}^{N_{p}} n_{j_{p}} h\left(z_{j_{p}}\right)
$$

EXPANSIONS BASED ON POLES OF A FUNCTION

- Taylor and Laurent series provide power series expansions of a function f.
- Other kinds of expansions can be useful based on poles of f :

$$
\begin{aligned}
& z_{n}, \quad n=1, \ldots, \infty \text { poles of function } f(z) \\
& \text { i) } f(z)=\sum_{n \in \text { poles }} g_{n}(z, n) \\
& \text { ii) } f(z)=\prod_{n \in \text { poles }} g_{n}(z, n)
\end{aligned}
$$

\triangleright The (extended) argument principle may be used to obtain such expansions.

APPLICATION TO EXPANSION IN SERIES OF FRACTIONS

- Use extended argument principle with $f(z)=\sin \pi z, h(z)=1 /\left(\alpha^{2}-z^{2}\right)$, and $z_{k}=k(k \in \mathbb{Z})$ with $n_{k}=1$.

$$
\text { So } I(\alpha)=\sum_{n=-N}^{N} \frac{1}{\alpha^{2}-n^{2}}
$$

- Now note that for $N \rightarrow \infty$ the integral on the square $\rightarrow 0$, and compute the integrals on the circles from the residues at $\pm \alpha$.

$$
\Longrightarrow \frac{\pi \cot \pi \alpha}{\alpha}=\sum_{n=-\infty}^{\infty} \frac{1}{\alpha^{2}-n^{2}}
$$

$\Longrightarrow \pi \cot \pi z=z \sum_{n=-\infty}^{\infty} \frac{1}{z^{2}-n^{2}}=\frac{1}{z}+2 z \sum_{n=1}^{\infty} \frac{1}{z^{2}-n^{2}}=\frac{1}{z}+\frac{2 z}{z^{2}-1}+\frac{2 z}{z^{2}-4}+\ldots$

- expansion of π cot πz in a series of fractions
based on the poles of the function
\diamond Expansion of function f, having poles $z_{j}, 0<\left|z_{1}\right| \leq \ldots \leq\left|z_{j}\right| \leq \ldots$, with residues r_{j} :

$$
f(z)=f(0)+\sum_{j} r_{j}\left(\frac{1}{z-z_{j}}+\frac{1}{z_{j}}\right)
$$

- For $f(z)=\cot z-1 / z$ this gives

$$
\cot z=\frac{1}{z}+\sum_{n= \pm 1, \pm 2, \ldots}\left(\frac{1}{z-n \pi}+\frac{1}{n \pi}\right)
$$

i.e., the expansion at the top:

$$
\cot z=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{1}{z-n \pi}+\frac{1}{z+n \pi}\right)=\frac{1}{z}+2 z \sum_{n=1}^{\infty} \frac{1}{z^{2}-n^{2} \pi^{2}}
$$

AN EXAMPLE OF INFINITE PRODUCT EXPANSION

$$
\begin{gathered}
\frac{d}{d z} \ln \sin \pi z=\pi \cot \pi z=\frac{1}{z}+2 z \sum_{n=1}^{\infty} \frac{1}{z^{2}-n^{2}} \\
\Longrightarrow \ln \sin \pi z=\ln z+c_{0}+\sum_{n=1}^{\infty}\left[\ln \left(z^{2}-n^{2}\right)+c_{n}\right] \\
\text { with } c_{0}=\ln \pi, \quad c_{n}=-\ln \left(-n^{2}\right) \\
\Longrightarrow \sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
\end{gathered}
$$

\triangleright infinite-product expansion of the function $\sin \pi z$

