FUNCTIONS OF A COMPLEX VARIABLE (S1) Lecture 7

Power series expansions

▷ Taylor series

▷ Laurent series

▷ Classification of singularities

V. POWER SERIES EXPANSIONS

Basic concepts

• series of functions: $S = \sum_{n=0}^{\infty} s_n(z)$

• power series: $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, $a_n \in \mathbb{C}$

• radius of convergence: nonnegative real R such that series converges for |z| < R, diverges for |z| > R

A power series $S = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ is holomorphic in the region of convergence.

Importantly, converse is also true: a holomorphic function can always be represented by a power series expansion (\hookrightarrow Taylor).

Note: f representable by Taylor series expansion is said to be <u>analytic</u>. Thus the two above results amount to the equivalence

• holomorphic = analytic

TAYLOR SERIES EXPANSION

 \diamond Let f be holomorphic in simply connected domain D. Let $a \in D$.

Then a) f has a series expansion in powers of z - a:

 $f(z) = f(a) + f'(a)(z - a) + \dots + (f^{(n)}(a)/n!)(z - a)^n + \dots$

- b) this expansion is unique;
- c) the circle of convergence of the series is the circle of centre a passing through the nearest point to a where f is no longer holomorphic.

$$f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi \quad |z - a| < |\xi - a| \implies \frac{1}{\xi - z} =$$
$$= \frac{1}{\xi - a} \frac{1}{1 - (z - a)/(\xi - a)} = \frac{1}{\xi - a} + \frac{z - a}{(\xi - a)^2} + \dots + \frac{(z - a)^n}{(\xi - a)^{n+1}} + \dots$$

(a)

• Integrate term by term:

$$f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{\xi - a} d\xi + \frac{z - a}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{(\xi - a)^2} d\xi + \ldots + \frac{(z - a)^n}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{(\xi - a)^{n+1}} d\xi + \ldots$$

• Apply Cauchy integral formulas of order n:

$$f(z) = f(a) + f'(a)(z - a) + \ldots + \frac{f^{(n)}(a)}{n!}(z - a)^n + \ldots$$

Taylor series expansion of f about $z = a$

(b) Show that the expansion is unique.

• Suppose there exists another expansion

• Consider
$$\oint_{\Gamma} \frac{f(z)}{(z-a)^k} dz = c_0 \oint_{\Gamma} \frac{1}{(z-a)^k} dz + \dots + c_n \oint_{\Gamma} (z-a)^{n-k} dz + \dots$$

• generic term : $\oint_{\Gamma} (z-a)^p dz = r^{p+1} \qquad \underbrace{i \int_{0}^{2\pi} d\theta \ e^{i(p+1)\theta}}_{= 2\pi i \text{ if } p = -1 , 0 \text{ if } p \neq -1} \quad . \text{ Set } r = 1 .$

 \implies only the term with $n=k-1 \text{ is } \neq 0$

Then
$$\oint_{\Gamma} \frac{f(z)}{(z-a)^k} dz = 2\pi i c_{k-1} \implies c_{k-1} = \frac{f^{(k-1)}(a)}{(k-1)!}$$

(c) radius of convergence R

- Let z_1 be the point nearest to a at which f is no longer holomorphic.
- Let r be the radius of the circle γ centred in a passing through z_1 .

- $\Diamond f$ holomorphic in circle of convergence $\Rightarrow R \leq r$
- \diamond by the same reasoning as in part a) for any z_2 inside γ there exists circle containing z_2 where Taylor expansion holds $\Rightarrow R \ge r$

Thus
$$R = r$$

EXAMPLES OF TAYLOR SERIES

$$\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

$$\sinh z = \sum_{n=0}^{\infty} \frac{z}{(2n+1)!}$$

• the above functions are holomorphic over the whole \mathbb{C} ("entire functions") \Rightarrow radius of convergence of the above series expansions is $R = \infty$

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n \ z^n$$

• this series converges for $|z| < 1$, i.e. $R = 1$,

Re z

because z = -1 is an isolated singularity of the function

LAURENT SERIES EXPANSION

• generalizes Taylor to functions that fail to be holomorphic at isolated points \longrightarrow extension of Taylor to multiply connected regions D

 $\Diamond f$ holomorphic in annulus \mathcal{A} between Γ and γ . Then for any $z \in \mathcal{A}$

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$$
, where $c_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{(\xi-a)^{n+1}} d\xi$

• n < 0: "principal part"; $n \ge 0$ "analytic part".

 \Diamond Rewrite both integrals on Γ and γ by power expanding $1/(\xi - z)$ and integrating term by term:

•
$$\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi = \sum_{n=0}^{\infty} c_n (z - a)^n$$
, where $c_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{(\xi - a)^{n+1}} d\xi$

Note: cannot conclude that $c_n = f^{(n)}(a)/n!$ because Cauchy integral formulas do not apply to Γ contour.

•
$$-\frac{1}{2\pi i} \oint_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \sum_{n=1}^{\infty} \frac{1}{(z - a)^n} \underbrace{\frac{1}{2\pi i} \oint_{\gamma} f(\xi)(\xi - a)^{n-1} d\xi}_{\gamma}$$

 c_{-n} (deform contour from γ to Γ)

 \diamond Put the two contributions together:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n + \sum_{n=1}^{\infty} c_{-n} \frac{1}{(z-a)^n}$$

$$= \sum_{n=-\infty}^{\infty} c_n (z-a)^n , \text{ where } c_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{(\xi-a)^{n+1}} d\xi$$

Laurent series expansion of f about z = a

Remarks

▲ Laurent expansion generalizes Taylor expansion: if D is simply connected all c_{-|n|} are zero.
▲ Laurent expansion is unique.
▲ Region of convergence is annulus R_γ < |z - a| < R_Γ; as in Taylor, it may be enlarged to nearest singular point.

Examples

$$f(z) = \frac{z+1}{z-1}$$

Taylor series
$$f(z) = -1 - 2z - 2z^2 + \ldots = -1 - 2\sum_{n=1}^{\infty} z^n$$
, $|z| < 1$

Laurent series
$$f(z) = 1 + \frac{2}{z} + \frac{2}{z^2} + \ldots = 1 + 2\sum_{n=1}^{\infty} \frac{1}{z^n}$$
, $1 < |z| < \infty$

• By Laurent series one can also expand about a singular point:

$$f(z) = \frac{\sin z}{z^4} = \frac{1}{z^4} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots \right) = \underbrace{\frac{1}{z^3} - \frac{1}{6z}}_{\text{principal part}} + \underbrace{\frac{z}{120} + \dots}_{\text{analytic part}}, \quad |z| > 0$$

$$f(z) = \frac{1}{z^2 \sinh z} = \frac{1}{z^2} \frac{1}{z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots} = \underbrace{\frac{1}{z^3} - \frac{1}{6z}}_{\text{principal part}} + \underbrace{\frac{7}{360} z + \dots}_{\text{analytic part}}, \quad 0 < |z| < \pi$$

CLASSIFICATION OF SINGULAR POINTS

a is <u>zero</u> of *f* if f(a) = 0. *a* is zero of order n if $f(a) = f'(a) = \ldots = f^{(n-1)}(a) = 0$ and $f^{(n)}(a) \neq 0$.

 \blacklozenge a is pole of order n of f if a is zero of order n of 1/f.

$$\Rightarrow f(z) = \frac{h(z)}{(z-a)^n}, \quad h(z) = h_0 + h_1(z-a) + \dots, \quad h_0 \neq 0$$

Therefore $f(z) = \frac{h_0}{(z-a)^n} + \frac{h_1}{(z-a)^{n-1}} + \dots + h_n + h_{n+1}(z-a) + \dots$

The principal part of the Laurent series terminates at $(z-a)^{-n}$ for a pole of order n

 a is <u>essential singularity</u> if the principal part of the Laurent series does not terminate to any finite n, i.e., it has infinitely many terms

Example:
$$e^{1/z} = 1 + \frac{1}{z} + \frac{1}{2}\frac{1}{z^2} + \ldots = \sum_{n=0}^{\infty} \frac{1}{n!}\frac{1}{z^n}$$

A Note: a is said to be a <u>removable</u> singularity of f if f does not exist at z = a but $\lim_{z \to a} f$ exists.

Example:
$$f(z) = \frac{\sin z}{z}$$
 at $z = 0$

Then f can be made holomorphic by redefinition of only one point.

 \Rightarrow The principal part of the Laurent series has no terms in the case of a removable singularity