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1. Introduction

In these notes, we show how to obtain solutions for the wave equation with two bound-
ary conditions without resorting to D’Alembert’s solution. The new technique is known
as separation of variables, and can simplify the problem significantly in some cases.

2. Separation of variables

The idea behind separation of variables is to reproduce the calculation that we have
already performed for systems of ODEs. The motion of a system of oscillators is described
by a system of ODEs of the form

d2q

dt2
= D · q, (2.1)

where q(t) is the vector that contains the position of the different oscillators, and D is a
constant square matrix. To solve system (2.1), we propose solutions of the form

q(t) = Θ(t)Q, (2.2)

where the vector Q does not depend on time. With this assumption, Θ(t) and Q must
satisfy

D ·Q =
1

Θ

d2Θ

dt2
Q. (2.3)

Thus, Q must be an eigenvector of matrix D, and Θ−1(d2Θ/dt2) the corresponding
eigenvalue. For matrices D that have a complete basis of eigenvectors {e1, e2, . . . , en}
with their corresponding eigenvalues {Λ1,Λ2, . . . ,Λn}, the most general solution is

q(t) =

n∑
i=1

[
Ai cos(

√
−Λit) +Bi sin(

√
−Λit)

]
ei, (2.4)

where the constants Ai and Bi are determined by the initial conditions. Note that we have
written the solution in a convenient form for negative eigenvalues Λi, but the expression
is still valid for complex eigenvalues.

The wave equation can be written analogously to equation (2.1),

∂2y

∂t2
= c2

∂2y

∂x2
. (2.5)

Here, the operator c2(∂2/∂x2) plays the role of matrix D. We solved system (2.1) by
assuming that all oscillators moved in unison, but with different amplitudes, as shown
in equation (2.2). For the wave equation, we can use the continuum limit of this idea,
that is, each position x has its corresponding oscillator that moves with amplitude Q(x),
giving

y(x, t) = Θ(t)Q(x). (2.6)
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With this assumption, we can write equation (2.5) as

1

c2Θ

d2Θ

dt2
=

1

Q

d2Q

dx2
. (2.7)

Note that here we are setting a function of t equal to a function of x. Since these are
functions of different variables, they can only be equal if they are constant, that is,

d2Θ

dt2
= Λc2Θ (2.8)

and
d2Q

dx2
= ΛQ, (2.9)

where the constant Λ can only take a limited set of values – in complete analogy to the
eigenvalues of matrix D. To determine these special values of Λ that are eigenvalues of
the operator ∂2/∂x2, we need to consider the boundary conditions. We proceed to find
the eigenvalues for a series of simple examples. You can also find an example of separation
of variables with a more general boundary condition in Appendix A.

2.1. Two Dirichlet boundary conditions

We consider a stretched string that is held in place at x = 0 and x = L, that is, we use
the boundary conditions

y(x = 0, t) = 0, y(x = L, t) = 0. (2.10)

For a solution of the form (2.6) to satisfy these boundary conditions, we need to impose

Q(0) = 0, Q(L) = 0. (2.11)

Solving for Q(x) using equation (2.9), we find

Q(x) = C+e
√

Λx + C−e
−
√

Λx. (2.12)

Imposing conditions (2.11), we obtain a linear system of equations for the unknown
constants C+ and C−, (

1 1

e
√

ΛL e−
√

ΛL

)(
C+

C−

)
=

(
0
0

)
. (2.13)

This linear system of equations for C+ and C− gives a nontrivial solution only if the
matrix is singular. By setting the determinant of the matrix equal to zero, we find the
equation

e2
√

ΛL = 1. (2.14)

Using 1 = e2πki, with k an integer number, this equation leads to

Λ = −k
2π2

L2
. (2.15)

Since k appears squared, we only need to consider k > 0 from here on.
In principle, k could be equal to zero, giving Λ = 0. For this value of Λ, the solution

for Q(x) is not equation (2.12), but Q(x) = C + C̃x, where C and C̃ are constants that
we need to determine using boundary conditions (2.11). It is not possible to find C 6= 0

and C̃ 6= 0 that satisfy these boundary conditions, so Λ = 0 is not of interest. Thus, the
final set of eigenvalues is

Λk = −k
2π2

L2
, (2.16)
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with k = 1, 2, 3, . . . The corresponding eigenfunctions Qk(x) satisfy equation (2.9) and
boundary conditions (2.11),

Qk(x) = sin

(
kπx

L

)
. (2.17)

The functions Qk(x) are defined up to a constant that can be absorbed into Θ(t). The
functions Qk(x) are the modes of the system.

For eigenvalue Λk = −k2π2/L2, we can solve equation (2.8) for Θ(t), finding

Θk(t) = Ak cos

(
kπct

L

)
+Bk sin

(
kπct

L

)
. (2.18)

The constants Ak and Bk must be determined by the initial conditions, as we will see
shortly.

Combining all these results, we find that the most general solution to this problem is

y(x, t) =

∞∑
k=1

[
Ak cos

(
kπct

L

)
+Bk sin

(
kπct

L

)]
sin

(
kπx

L

)
. (2.19)

Note that this solution is periodic in time with period τ = 2L/c.
We finish by showing how one imposes initial conditions. The initial conditions for the

string are its position and velocity,

y(x, t = 0) = y0(x),
∂y

∂t
(x, t = 0) = ẏ0(x). (2.20)

It turns out that any function of x between 0 and L can be written as an infinite series
of sines,

f(x) =

∞∑
k=1

Fk sin

(
kπx

L

)
, (2.21)

and the coefficients {F1, F2, F3, . . .} of this decomposition are unique, that is, there is
no other set of coefficients {F ′1, F ′2, F ′3, . . .} that gives the same function f(x). Next year,
in Mathematical Methods, you will learn how to calculate these coefficients from the
function f(x). For now, it is sufficient to know that they exist and that they are unique.
Thus, we can write y0(x) and ẏ0(x) as

y0(x) =

∞∑
k=1

Yk sin

(
kπx

L

)
, ẏ0(x) =

∞∑
k=1

Ẏk sin

(
kπx

L

)
. (2.22)

With these decompositions of y0(x) and ẏ0(x), we can impose initial conditions (2.20)
on the solution (2.19) to find

Ak = Yk,
kπc

L
Bk = Ẏk. (2.23)

For this course, you will usually be given initial conditions that are finite sums of sines
so that it is easy for you to identify the coefficients Yk and Ẏk. For example, for

y(x, t = 0) = h sin
(πx
L

)
,

∂y

∂t
(x, t = 0) = 0, (2.24)

the coefficients Ẏk are zero for all values of k, and the coefficients Yk are zero for k 6= 1.
For k = 1, Y1 = h, giving the final solution

y(x, t) = h cos

(
πct

L

)
sin
(πx
L

)
. (2.25)



4 Felix I. Parra

2.2. Two Neumann boundary conditions

In this section, we consider a stretched string that slides along frictionless columns at
x = 0 and x = L,

∂y

∂x
(x = 0, t) = 0,

∂y

∂x
(x = L, t) = 0. (2.26)

Following the procedure above for this case gives the general solution

y(x, t) = A0 + Ã0t+

∞∑
k=1

[
Ak cos

(
kπct

L

)
+Bk sin

(
kπct

L

)]
cos

(
kπx

L

)
. (2.27)

In this case, the string can slide freely along the columns, as demonstrated by the term
linear in time. Apart from this linear term, the solution is again periodic in time with
period τ = 2L/c.

2.3. One Dirichlet boundary condition and one Neumann boundary condition

As an example of a wave equation with two different boundary conditions, we consider
a stretched string that is held in place at x = 0 and slides along a frictionless column at
x = L,

y(x = 0, t) = 0,
∂y

∂x
(x = L, t) = 0. (2.28)

In this case, separation of variables gives the general solution

y(x, t) =

∞∑
k=1

[
Ak cos

(
(k − 1/2)πct

L

)
+Bk sin

(
(k − 1/2)πct

L

)]
sin

(
(k − 1/2)πx

L

)
.

(2.29)
This solution is periodic in time with period τ = 4L/c.

3. Stationary waves

The solutions that we have found using separation of variables are stationary waves:
they are oscillating patterns that do not move along x.

It is instructive to see how to construct stationary waves from the D’Alembert solution.
The stationary wave solutions that we have found are of the form sin(kx+θ) sin(kct+ϕ),
and they can be constructed from left- and right-traveling sinusoidal waves of the same
amplitude. Indeed, for f(x− ct) = A cos(k(x− ct) + θ−ϕ) and g(x+ ct) = −A cos(k(x+
ct) + θ + ϕ), we find

y(x, t) = f(x− ct) + g(x+ ct) = 2A sin(kx+ θ) sin(kct+ ϕ). (3.1)

The time-averaged energy fluxes due to the left- and right-traveling waves cancel each
other because the two waves have the same amplitude. Indeed, using the time average
over one period,

〈. . .〉τ =
kc

2π

∫ t+2π/kc

t

(. . .) dt′, (3.2)

the time averaged energy fluxes are 〈εf 〉τ c = Tk2A2c/2 and −〈εg〉τ c = −Tk2A2c/2.
Thus, these fluxes cancel at every point x, ensuring that the energy does not grow or
decay at any given point on average, although there are instantaneous changes in the
energy as it sloshes from one x location to another.
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4. Energy and modes

The modes that we have calculated in the examples in sections 2.1, 2.2 and 2.3 have
one surprising property: the total energy contained in any wave can be split into the sum
of the energies in each mode despite the fact that the energy is a quadratic quantity.
This is a consequence of the simple boundary conditions that we have imposed.

The solutions that we have found in sections 2.1, 2.2 and 2.3 are of the form

y(x, t) = A0 + Ã0t+

∞∑
k=1

Ck cos
(√
−Λkct− ϕk

)
Qk(x), (4.1)

where the functions Qk(x) satisfy equation

d2Qk
dx2

= ΛkQk (4.2)

and boundary conditions of the type Qk = 0 or dQk/dx = 0 at x = 0 and x = L.

For example, solution (2.19) can be recovered with A0 = 0, Ã0 = 0, Ck =
√
A2
k +B2

k,
tanϕk = Bk/Ak, Λk = −k2π2/L2 and Qk(x) = sin(kπx/L).

If y(x, t) is the transverse displacement of a stretched string of linear density µ and
tension T , the energy contained in the string motion is

E =
µ

2

∫ L

0

(
∂y

∂t

)2

dx+
T

2

∫ L

0

(
∂y

∂x

)2

dx. (4.3)

Integrating the second term by parts, we find

E =

∫ L

0

[
µ

2

(
∂y

∂t

)2

− Ty

2

∂2y

∂x2

]
dx+

T

2

[
y
∂y

∂x

]x=L

x=0

. (4.4)

The combination y(∂y/∂x) vanishes due to the boundary conditions imposed on Qk(x)
at x = 0 and x = L. Using this fact and equation (4.2), we rewrite the energy as

E =

∫ L

0

[
µ

2

(
Ã0 − c

∞∑
k=1

√
−ΛkCk sin

(√
−Λkct− ϕk

)
Qk(x)

)2

− T

2

( ∞∑
k=1

Ck cos
(√
−Λkct− ϕk

)
Qk(x)

)( ∞∑
l=1

ΛlCl cos
(√
−Λlct− ϕl

)
Ql(x)

)]
dx.

(4.5)

If equation (4.5) is expanded, we find integrals of the form Ã0Ck
∫ L

0
Qk(x) dx and

CkCl
∫ L

0
Qk(x)Ql(x) dx, giving a complicated expression for the energy E. This is hardly

surprising given the quadratic nature of the energy. What is surprising is that the modes

satisfy Ã0

∫ L
0
Qk(x) dx = 0 and

∫ L
0
Qk(x)Ql(x) dx = 0. This result can be checked by

direct integration, or using equation (4.2), as we proceed to show. Multiplying equa-
tion (4.2) by Ql(x) and integrating over x, we find∫ L

0

Ql
d2Qk
dx2

dx = Λk

∫ L

0

QlQk dx. (4.6)

Integrating the term on the left side of the equation by parts, we obtain[
Ql

dQk
dx

]x=L

x=0

−
∫ L

0

dQl
dx

dQk
dx

dx = Λk

∫ L

0

QlQk dx. (4.7)



6 Felix I. Parra

The combination Ql(dQk/dx) vanishes at x = 0 and x = L due to the boundary condi-
tions, leaving

−
∫ L

0

dQl
dx

dQk
dx

dx = Λk

∫ L

0

QlQk dx. (4.8)

We obtained this expression by multiplying equation (4.2) for Qk(x) by Ql(x) and inte-
grating over x. One can multiply the equation for Ql(x) by Qk(x) and integrate over x
to find the alternative equation

−
∫ L

0

dQl
dx

dQk
dx

dx = Λl

∫ L

0

QlQk dx. (4.9)

Note that the left sides of equations (4.8) and (4.9) are the same, and thus, if we subtract
one equation from the other, we find

(Λk − Λl)

∫ L

0

QlQk dx = 0. (4.10)

Thus, ∫ L

0

QlQk dx = 0 for k 6= l. (4.11)

This equation also proves that Ã0

∫ L
0
Qk(x) dx vanishes. The coefficient Ã0 is different

from zero only when Λ0 = 0 is an eigenvalue and hence Q0(x) = 1 is a mode. As a result,

either Ã0 = 0 or
∫ L

0
Q0Qk dx =

∫ L
0
Qk dx = 0 for k > 1, giving

Ã0

∫ L

0

Qk dx = 0 for k > 1. (4.12)

Using equations (4.11) and (4.12), the cross-terms in equation (4.5) for the energy
vanish, giving the much simpler result

E =
µ

2

(
Ã2

0L− c2
∞∑
k=1

ΛkC
2
k sin2

(√
−Λkct− ϕk

)∫ L

0

Q2
k(x) dx

)

− T

2

∞∑
k=1

ΛkC
2
k cos2

(√
−Λkct− ϕk

)∫ L

0

Q2
k(x) dx. (4.13)

Using c =
√
T/µ finally gives the explicitly time-independent expression

E =
µLÃ2

0

2
− T

2

∞∑
k=1

ΛkC
2
k

∫ L

0

Q2
k(x) dx. (4.14)

Thus, the total energy is simply the sum of the energy of each mode. Expression (4.14)
can be further simplified by realizing that the functions Qk(x) in sections 2.1, 2.2 and

2.3 satisfy
∫ L

0
Q2
k(x) dx = L/2, finally leading to

E =
µLÃ2

0

2
− TL

4

∞∑
k=1

ΛkC
2
k . (4.15)

For the example in equation (2.19), with Ã0 = 0, Λk = −k2π2/L2 and Ck =
√
A2
k +B2

k,
the energy is then

E =
π2T

4L

∞∑
k=1

k2(A2
k +B2

k). (4.16)
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As we pointed out at the start of this section, the split of the energy into a sum of
the energies of the individual modes was possible due to the simple boundary conditions
considered in sections 2.1, 2.2 and 2.3. For more complex boundary conditions, one needs
to carefully choose what to include or exclude in the definition of the energy of the system.
See the end of Appendix A for an example of these more general boundary conditions.
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(b)

Figure 1. Solutions to equation (A 4). (a) For Λ > 0, the solutions are intersections between

the curves tanh(
√

ΛL) (in red) and −(T/K)
√

Λ (in blue for different values of T/KL: dashed
line for T/KL = 0.5, solid for T/KL = 1 and dash-dot for T/KL = 2). (b) For Λ < 0, we
use α =

√
−ΛL/π. The solutions are intersections between the curves tan(πα) (in red) and

−(πT/KL)α (in blue for different values of πT/KL: dashed line for πT/KL = 0.5, solid for
πT/KL = 1 and dash-dot for πT/KL = 2).

Appendix A. Example of separation of variables for a general
boundary condition

We finish these notes by considering a situation in which the eigenvalues and modes
are not as simple as the ones described so far: a stretched string that is held in place at
x = 0 and that, at x = L, is knotted to a frictionless column and to a spring of constant
K,

y(x = 0, t) = 0,
∂y

∂x
(x = L, t) +

K

T
y(x = L, t) = 0. (A 1)

For assumption (2.6) to work, we need to impose

Q(0) = 0,
dQ

dx
(L) +

K

T
Q(L) = 0. (A 2)

Using solution (2.12) for Q(x), we find that these boundary conditions lead to the linear
system of equations(

1 1

(
√

Λ +K/T )e
√

ΛL (−
√

Λ +K/T )e−
√

ΛL

)(
C+

C−

)
=

(
0
0

)
(A 3)

for the constants C+ and C−. This system of equations gives nontrivial solutions only
when the matrix is singular. Requiring that the determinant of the matrix vanishes leads
to

tanh(
√

ΛL) = − T
K

√
Λ. (A 4)

One can show that Λ is real. Thus, we need to distinguish two cases to solve this equation:

• Positive Λ. For positive values of Λ, the solutions to equation (A 4) are the intersec-
tions between a hyperbolic tangent and a straight line, as shown in figure 1(a). Only Λ = 0

is a solution, and as we have seen, the solution for this value of Λ is Q(x) = C+C̃x. Since

it is not possible to find values C 6= 0 and C̃ 6= 0 that satisfy the boundary conditions,
Λ is in fact not an eigenvalue.
• Negative Λ. For negative values of Λ, we can rewrite equation (A 4) using the new
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Figure 2. Coefficients α1, α2 and α3 for different values of πT/KL.

variable α =
√
−ΛL/π,

tan(πα) = − πT
KL

α. (A 5)

The solutions to this equation are then the intersections between tan(πα) and a straight
line, as shown in figure 1(b). There are infinitely many solutions {α1, α2, α3, . . .}. For
example, for πT/KL = 1, we find

α1 = 0.788, α2 = 1.672, α3 = 2.616, α4 = 3.587, . . . (A 6)

In figure 2 we plot how α1, α2 and α3 depend on πT/KL. For πT/KL = 0, we find
αk = k, whereas for πT/KL→∞, αk → k − 1/2.

As a result of the discussion above, we find that the eigenvalues are

Λk = −α
2
kπ

2

L2
, (A 7)

with k = 1, 2, 3, . . . The corresponding general solution is then

y(x, t) =

∞∑
k=1

[
Ak cos

(
αkπct

L

)
+Bk sin

(
αkπct

L

)]
sin
(αkπx

L

)
. (A 8)

In this system, the energy that splits into a nice sum of the energies of the modes must
include the potential energy of the spring at x = L,

E =
µ

2

∫ L

0

(
∂y

∂t

)2

dx+
T

2

∫ L

0

(
∂y

∂x

)2

dx+
1

2
Ky2(x = L, t) (A 9)

=
π2T

2L2

∞∑
k=1

α2
k(A2

k +B2
k)

∫ L

0

sin2
(αkπx

L

)
dx. (A 10)

The energy of the stretched string alone, (µ/2)
∫ L

0
(∂y/∂t)2 dx + (T/2)

∫ L
0

(∂y/∂x)2 dx,
does not satisfy this property. It is easy to see that this is the case: the energy of the
spring

1

2
Ky2(x = L, t) =

K

2

∞∑
k=1

∞∑
l=1

[
Ak cos

(
αkπct

L

)
+Bk sin

(
αkπct

L

)]
×
[
Al cos

(
αlπct

L

)
+Bl sin

(
αlπct

L

)]
sin(αkπ) sin(αlπ) (A 11)

cannot be split into a sum of the energies of the modes and hence the energy of the
stretched string, given by E −Ky2(x = L, t)/2, cannot either.


