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1. Introduction

In these notes, we introduce sinusoidal waves, a very useful tool because it simplifies
significantly some of the calculations. In particular, we will show how to use them to
obtain solutions with complex boundary conditions and with inhomogeneous wave speed
c. In future lectures, we will see that sinusoidal waves can also be used for equations that
are not solved by the d’Alembert solution.

2. Sinusoidal waves

We have seen that the wave equation is solved by the d’Alembert solution y(x, t) =
f(x − ct) + g(x + ct). A particularly interesting option for f(u) and g(v) are sines and
cosines. For example, we can choose

f(x− ct) = C cos(k(x− ct) + ϕ). (2.1)

The sinusoidal wave is charaterised by
• Wavenumber = k,
• Wavelength = 2π/k,
• Angular frequency ω = kc,
• Frequency f = ω/2π,
• Period τ = 2π/ω,
• Amplitude = C, and
• Phase = ϕ.
It is usually convenient to rewrite the sinusoidal wave as a complex exponential,

C cos(kx− ωt+ ϕ) =
1

2
Ceiϕeikx−iωt + complex conjugate, (2.2)

where the complex number Ceiϕ is the complex amplitude. Both the sinusoidal wave
and the complex exponential are solutions to the wave equation, and can be used inter-
changeably.

Why would we focus on sinusoidal solutions to the wave equation? The most important
reason is that one can construct any function using them. Indeed, under certain assump-
tions, one can write any function f(u) as a linear combination of sinusoidal waves,

f(u) =

∫ ∞
−∞

F (k)eiku dk. (2.3)

You will see a proof of this next year, in Mathematical Methods. For this course, it
is sufficient to know that this is possible to do, and hence one should be interested in
sinusoidal waves.
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Figure 1. Boundary condition at x = 0.

3. Boundary conditions for sinusoidal waves

In this section of the notes, we will consider two problems to illustrate the advantages
of using sinusoidal waves: a stretched string with a general boundary condition, and
transmission lines.

3.1. Stretched string with general boundary condition

We consider a semi-infinite string that extends from x = 0 to x = +∞. At x = 0, the
string is knotted around a frictionless column, and it is attached to a vertical spring with
spring constant K. The knot is massless. The configuration is sketched in figure 1. Force
balance at the knot gives

T
∂y

∂x
(x = 0, t)−Ky(x = 0, t) = 0. (3.1)

Applying boundary condition (3.1) to the d’Alembert solution is possible but tedious.
The problem becomes more tractable if we use sinusoidal waves. We consider a sinusoidal
wave traveling from x = +∞ to x = 0,

g(x+ ct) =
1

2
Ce−ik(x+ct) + complex conjugate. (3.2)

Here, C can be a complex number. Using boundary condition (3.1), we can obtain the
wave traveling to the right (reflected wave), f(x− ct), from the incoming wave g(x+ ct).
With a sinusoidal incoming wave g(x+ ct), obtaining the reflected wave turns out to be
trivial. Since all the coefficients in boundary condition (3.1) are constant, the reflected
wave is also sinusoidal,

f(x− ct) =
1

2
Reik(x−ct) + complex conjugate. (3.3)

Note that only the complex constant R is not known here. Note as well that we have
written the complex exponential such that the time dependence is the same for both
the right- and the left-traveling waves, i.e. they are both proportional to e−iωt. This is
a choice that simplifies the equations below. It is always possible to make this choice
because the solution is a complex exponential plus its complex conjugate.

We can check that the reflected wave in equation (3.3) is the solution by checking that
it satisfies boundary condition (3.1). Since y(x, t) = f(x − ct) + g(x + ct), the different
functions that enter in the boundary conditions are

y(x = 0, t) =
1

2
(C +R)e−ikct + complex conjugate (3.4)
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and
∂y

∂x
(x = 0, t) =

1

2
ik(−C +R)e−ikct + complex conjugate. (3.5)

Replacing all these results into equation (3.1), we find

ikT (−C +R)−K(C +R) = 0. (3.6)

This equation gives R as a function of C,

R

C
= −K + ikT

K − ikT
. (3.7)

Note that the modulus of R/A is one, and hence

R

C
= eiϕ, (3.8)

where

ϕ = −π + 2 arctan

(
kT

K

)
(3.9)

is the phase between the right- and the left-traveling wave. In the limit kT/K → 0,
the spring is too stiff and the point at x = 0 barely moves, giving y(x = 0, t) = 0 and
ϕ = −π, i.e. when the extreme of the string is pinned, the right- and left-traveling wave
are in anti-phase (cf with the result that we obtained for the d’Alembert solution). In the
limit kT/K →∞, the spring barely exerts any force, and the spring behaves as if there
was no vertical force at x = 0, leading to ∂y(x = 0, t)/∂x = 0 and ϕ = 0. In this case,
the two waves are in phase, as one would expect from the calculation that we performed
in the notes about the d’Alembert solution.

3.2. Transmission lines and wave impedance

To transmit electric power at high frequencies, one cannot use simple wires as these
would radiate the power away. Instead, we use transmission lines such as co-axial cables.
These transmission lines can be conceptualized as two conducting wires next to each
other, as sketched in figure 2. One of the conductors absorbs the waves emitted by the
other, preventing losses due to radiation. The potential difference V (x, t) between the
two conductors and the current I(x, t) flowing through them depend on the position x
along the line and the time t. Note that the current on one of the conductors is opposite
to the current on the other to maintain zero charge. Focusing on an infinitesimal piece
of the line of length dx, we note two important facts:
• Consider the piece of the top conductor of length dx shown in figure 2 as a dashed

box. Charge dQ accumulates within this piece of conductor due to the different currents
at its two extremes,

∂

∂t
dQ = I(x)− I(x+ dx) = −∂I

∂x
dx. (3.10)

The same charge but with opposite sign accumulates in the other conductor. Thus,
the two pieces of conductor of length dx work as a capacitor. Since the capacitance is
proportional to the length of the conductor, we can write the capacitance as C ′ dx, where
C ′ is a capacitance per unit length. Thus, dQ = C ′V dx. Using this result and assuming
that C ′ is constant in time, equation (3.10) gives

C ′
∂V

∂t
= −∂I

∂x
. (3.11)

• The currents through the conductor produce time varying magnetic fields that in
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Figure 2. Transmission line with currents in red and potential difference in blue.

turn drive electromotive forces in the conductors. The resulting inductance is proportional
to the length, and hence, for a piece of the transmission line of length dx, it can be
written as L′ dx, where L′ is an inductance per unit length. The potential drop due to
the inductance L′ dx is

V (x)− V (x+ dx) = L′
∂I

∂t
dx. (3.12)

This equation then gives

−∂V
∂x

= L′
∂I

∂t
. (3.13)

Combining equations (3.11) and (3.13), we find a wave equation. For example, differ-
entiating equation (3.11) with respect to time, we find

∂2V

∂t2
= − 1

C ′
∂2I

∂t∂x
. (3.14)

To calculate ∂2I/∂t∂x, we differentiate equation (3.13) with respect to x (assuming that
L′ is constant along the transmission line), finally obtaining

∂2V

∂t2
= c2

∂2V

∂x2
, (3.15)

where the wave speed in this case is given by

c =
1√
L′C ′

. (3.16)

Thus, we can use the d’Alembert solution for the voltage,

V (x, t) = fV (x− ct) + gV (x+ ct). (3.17)

A similar set of manipulations can be used to show that the current I(x, t) also satisfies
the wave equation and can hence be written as

I(x, t) = fI(x− ct) + gI(x+ ct). (3.18)

Typically, transmission lines end at electric loads that are characterized by their com-
plex impedance ZT that relates a sinusoidal voltage of frequency ω with the sinusoidal
current that this voltage induces in the load. We consider such a load at the end of a
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semi-infinite transmission line that extends from x = −∞ to x = 0. For a voltage

V (x = 0, t) =
1

2
V0e
−iωt + complex conjugate (3.19)

and a current

I(x = 0, t) =
1

2
I0e
−iωt + complex conjugate (3.20)

at x = 0, the load imposes

V0 = ZT I0. (3.21)

Let us assume that we have launched a right-traveling wave towards the load with a
voltage of the form

fV (x− ct) =
1

2
Aeik(x−ct) + complex conjugate. (3.22)

The presence of the boundary condition (3.21) will induce a reflected wave

gV (x+ ct) =
1

2
Re−ik(x+ct) + complex conjugate. (3.23)

To get the ratio R/A, we can use the useful concept of transmission impedance. This
is the ratio of the voltage and the current of the right-traveling wave,

ZL =
fV (x− ct)
fI(x− ct)

. (3.24)

Using equation (3.11) and c = 1/
√
L′C ′, we find

ZL =
1

cC ′
=

√
L′

C ′
. (3.25)

The same ratio for the left-traveling wave gives an impedance with the opposite sign,

gV (x+ ct)

gI(x+ ct)
= −ZL. (3.26)

Using these results in equation (3.21) gives

A+R = ZT

(
A

ZL
− R

ZL

)
, (3.27)

which can be solved to obtain
R

A
=
ZT − ZL
ZT + ZL

. (3.28)

Thus, we have found that in general loads reflect waves. These reflected waves are unde-
sirable because they mean that not all the energy transmitted has been used by the load,
and because they can damage the electric generator that produced the incoming wave.
Thus, one needs to design the load such that ZT = ZL. This is known as impedance
matching, and it is achieved by adding capacitors, inductors and resistors to the final
load.

4. Transmission problems

Up to this point, we have considered wave propagation in homogeneous media. We
will now start considering simple inhomogeneous systems. As an example, we proceed to
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study a stretched string composed of two strings a and b of different linear density, µa
and µb. These two strings are tied together at x = 0.

We know that the vertical motion of both strings, ya(x, t) and yb(x, t), is described by
the wave equation, but the wave speed is different in each of them. Due to horizontal force
balance at the knot, the tension has to be the same in both strings, giving the speeds
ca =

√
T/µa and cb =

√
T/µb. But in addition to knowing how each string moves, we

need to state how they interact. Since they are tied together at x = 0, we must have
continuity of vertical displacement,

ya(x = 0, t) = yb(x = 0, t). (4.1)

Assuming that the knot is massless, vertical force balance at the knot gives

T
∂ya
∂x

(x = 0, t) = T
∂yb
∂x

(x = 0, t). (4.2)

As an example of the motion in this two-string system, we consider a right-traveling
wave

fa(x− cat) =
1

2
Aeik(x−cat) + complex conjugate (4.3)

moving towards the knot at x = 0. The knot will reflect part of this wave, giving

ya(x, t) = fa(x− cat) + ga(x+ cat), (4.4)

with

ga(x+ cat) =
1

2
Re−ik(x+cat) + complex conjugate. (4.5)

The complex constant R still needs to be determined. The displacement of the knot at
x = 0 will also launch a right-traveling wave in the second string,

yb(x, t) = fb(x− cbt), (4.6)

where

fb(x− cbt) =
1

2
Beikb(x−cbt) + complex conjugate. (4.7)

The wavenumber kb and the complex constant B still need to be determined.
Imposing conditions (4.1) and (4.2), we will be able to find kb, R and B. Indeed,

condition (4.1) gives

Ae−ikcat +Re−ikcat = Be−ikbcbt. (4.8)

Thus, the frequency of all the waves must coincide,

ω = kca = kbcb, (4.9)

giving

kb = k
ca
cb

= k

√
µb
µa
. (4.10)

Then, condition (4.1) simplifies to

A+R = B (4.11)

Condition (4.2) gives

kA− kR = kbB (4.12)

Using all these equations, we finally obtain

B

A
=

2cb
ca + cb

=
2
√
µa√

µa +
√
µb

(4.13)
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and
R

A
=
cb − ca
ca + cb

=

√
µa −√µb√
µa +

√
µb
. (4.14)

Thus, there is always a reflected wave and not all the energy travels through the knot.
It is instructive to consider energy balance in this problem. We have already seen that

the work done by a stretched string is

−T ∂y
∂x

∂y

∂t
= εfc− εgc. (4.15)

where εf := T (f ′)2 and εg := T (g′)2. For sinusoidal waves

f(x− ct) =
1

2
Afe

ik(x−ct) + complex conjugate (4.16)

and

g(x+ ct) =
1

2
Age

−ik(x+ct) + complex conjugate, (4.17)

both εf and εg are periodic in time with period τ = 2π/ω = 2π/kc. Thus, it is convenient
to use the time average

〈F 〉τ =
1

τ

∫ t+τ

t

F (t′) dt′. (4.18)

With this time average, the work done by the string becomes

−T
〈
∂y

∂x

∂y

∂t

〉
τ

= 〈εf 〉τ c− 〈εg〉τ c, (4.19)

where

〈εf 〉τ =
1

2
k2T |Af |2, 〈εg〉τ =

1

2
k2T |Ag|2. (4.20)

Applying this result to x = 0, where the work done by the string a should be equal to
the work received by the string b, we find that

1

2
k2|A|2ca −

1

2
k2|R|2ca =

1

2
k2b |B|2cb, (4.21)

that is, the energy of the incoming wave in string a must be equal to the energy of the
reflected wave in string a and of the outgoing wave in string b. This equation can be
checked to be satisfied using equations (4.10), (4.13) and (4.14).


